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ABSRTACT: 

This paper proposes a new method that depends on the wavelet shrinkage and linking it to 

a Bayesian estimate and it is called wavelet Bayesian method for reducing the effect of 

contamination and then relying on the outputs of this method to estimate the multiple 

regression modelthrough using simulation experiment for several of data contamination 

and real data. The comparing results between the proposed method with traditional 

Bayesian methodbased on the statistical criterion(RMSE).It was concluded that the 

Bayesian estimation using wavelet shirking filter gives the best results and more accurate 

thantraditional method for all simulations and real data based on RMSE criterion.  
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1: Introduction  

Wavelet regression is a technique which attempts to reduce noise in a sampled 

function corrupted with noise. This is done by thresholding the small wavelet 

decomposition coefficients which represent mostly noise. It is well understood that 

conflicting sources of information may contaminate the inference when the classical 

normality of errors is assumed. The contamination caused by the light normal tails 

follows from an undesirable effect: the posterior concentrates in an area in between the 

different sources with a large enough scaling to incorporate them all. Outliers are 

observations that appear inconsistent with the rest of the data (Barnett, V. and Lewis, T., 

1994). Bayesian wavelet shrinkage has been widely used in several areas to reduce noise 

in data analysis .The theory of conflict resolution in Bayesian statistics (O’Hagan and 

Pericchi,2012) recommends addressing this problem by limiting the impact of outliers to 

obtain conclusions consistent with the bulk of the data. (Philippe G, et al.., 2020) 

proposed a model with super heavy-tailed errors to achieve this. We prove that it is 

wholly robust, meaning that the impact of outliers gradually vanishes as they move 

further and further away from the general trend. The super heavytailed density is similar 

to the normal outside of the tails, which gives rise to an efficient estimation procedure. In 

addition, estimates are easily computed. This is highlighted via a detailed user guide, 

where all steps are explained through a simulated case study. 

(Alex R. S. et al., 2021) proposed the use of a zero-contaminated beta distribution with a 

support symmetric around zero as the prior distribution for the location parameter in the 

wavelet domain in models with additive Gaussian errors. The hyper parameters of the 

proposed model are closely related to the shrinkage level, which facilitates their 

elicitation and interpretation. For signals with a low signal-to-noise ratio, the associated 

Bayesian shrinkage rules provide significant improvement in performance in simulation 

studies when compared with standard techniques. 

The wavelet theory is one of the modern and important theories with wide and different 

uses in various theoretical and applied fields. Recently, Wavelet shrinkage estimation has 

recently become a powerful mathematical technique for de-noising of function 

estimation, based on thresholding parameter and the choice of this threshold determines, 

to a great extent the efficiency and success of de-noising. In general, if the threshold 

parameter set too high, then signal structure will be lost. Alternatively, if it is set too low, 

then noise will be presented in the estimate. 

Since the early days of modern Bayesian inference one central issue has, of course, been 

the potentially strong dependence of the inferences on the prior. In particular in situations 

where data is scarce or unreliable, the actual estimate obtained by Bayesian techniques 

may rely heavily on the shape of prior knowledge, expressed as prior probability 

distributions on the model parameters.. In this paper dealt with presenting the proposed 

method that depends on the wavelet shrinkage and linking it to a Bayesian estimate and it 

is called the wavelet Bayesian method for Reducing the Effect of Outliers in Linear 

Regression Model. 

2: Theoretical part 
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2.1:Bayesian multiple linear regression model  

In this study, we will discuss the idea of estimating the parameters of the multiple linear 

regression models using the Bayesian method based on the Natural Conjugate Prior 

(Informative Prior) Probability Distribution (Zellner, A. ,1971) &(Shih-Hsien Tseng, 

M.S. ,2008): 

Informative Prior Probability Distribution 

Assume that we have the following model (Harrison.J. and Mike.W., 1989):
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Whereas: 

: Represents the informative Prior matrix 

0 : Represents the mean of the Prior distribution 
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M  : Represents the variance and covariance matrix of the Prior distribution. 

As for the likelihood function, it is: 
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Through Bayes' theorem, the function (2) can be combined with the function (3) to obtain 

the posterior probability density function of the parameter vector    as follows: 
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 The function (4) represents the kernel of a multivariate normal distribution with mean (

Bayse̂ ), which represents a Bayes estimator for the parameter vector )( and that the 

variance and covariance matrix can be defined as follows: 

)6()()ˆ( 1

0

2 −+=− MXXCovV Bayse   

2.2: Contaminations 

Contamination caused by outliers is inevitable in data analysis, and robust statistical 

methods are often needed kanamori, T. &fujisawa, H., (2015). The data come from two 

types of distributions the first is called Distribution Basic that generates good data While 

the second type, which is called Distribution Contaminating, which generates Outliers. 

This can be explained mathematically, if it was )(1 xf is the probability density function 

of the basic distribution and )(2 xf represents the probability of the contaminant 

distribution, then the distribution of any observations will be (Hawkins, 1980): 

)()()1()( 21 xfpxfpxf +−=                  (7) 

Where the standard normal distribution )(1 xf  is used for the regular data points, and 

)(2 xf is used for the contamination is chosen as the mixture distributions or Heavy tailed 

distribution. 

2.3: Wavelet Analysis 

The main goal of using filters in regression analysis of linear models is to exclude noise. 

The recent trends in the analysis of regression models are based on the use of wavelet 

filters instead of the usual filters, which are of course better and more efficient than the 

usual filters(Hamad.A.S, 2010).  

Using the discrete Wavelet Transform coefficients as filters for the contaminate 

observations presented by Researchers (Morris J. M. and Peravali R., 1999). 

A filter can be considered as an operator on 2  (discrete form of )(2 RL ) in to itself, a 

filter applied to a signal contaminated with noise to isolate the signal or to extract the 
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noise. In general, an observed (discrete) observation g is represented by a sequence }{ ig

zi , assuming )(2 zg  . 

A filter (A) can be presented by a )(2 z  sequence ziai }{ . The filtering process consists 

of a discrete convolution of the filter sequence with the observation. 

Applying the filter (A) to the observation (g) is written as: 


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 Yielding a new observation indexed by ( i ), which ranges over ( z ). 

The DWT is based on filter H and G defined respectively by zihi }{  and zig i }{  that 

were derived from the multiresolution analysis, the filters must be satisfied the following 

conditions: 

1- The stability of coefficient ih . 

  )8(2
1

0

=
−

=

n

i

ih  

2- Requiring the convergence of wavelet expansion forces the condition 
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3- The orthogonally of wavelets requires the condition 
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4- Finally if the scaling function is required to be orthogonal. 
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2.3.1: Discrete Wavelet Transform 

Discrete Wavelet Transform is coefficients that summarize the information of all 

observations with a smaller number and are located in the domain of time and frequency. 

Discrete Wavelet Transformation (DWT) is used in many different areas of life, 

especially when there is contaminate or noise in the data. (DWT) decomposes a signal by 

using scaled and shifted versions of a compact supported basis function (WalkerJ.S., 

1999).& (Abramovich F., et al., 2000) 

Given a vector of a signal ( X  ) consisting of j2  observation. The (DWT) of X  is  
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)12(wXW =    

 Where W is a ( 1*n ) vector comprising both discrete scaling and wavelet 

coefficients. The vector of wavelet coefficients can by organized into 1+j  vectors. 

 TVjWjWWW 00 ,,...,2,1=
 

Where Wj  is a length jj
NN

2
=  vector of wavelet coefficients (Details) associated with 

changes on a scale of length 
12 −= j

j  symbol as CD, and( joV  )is a length jj
NN

20 =  

vector of scaling coefficients (approximation or smoothing) associated with average on a 

scale of length 0

0
2

J

J =  symbol as CA, and w  is an orthonormal NN *  matrix 

associated with the orthonormal wavelet basis chosen(Antoniadis,A.,2007)(Gencay,R.,et 

al.,2002). 

After each DWT, the approximation coefficients are divided into bands using the same 

filter as before, with the result that the details are appended with the details of the latest 

decomposition, at each level, the signal can be reconstructed of the de-noise signal by the 

inverse transform. 
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2.3.2: Wavelet Shrinkage 

One of the primary applications that are made to the view after its analysis by wavelet 

transformation is the noise or contaminates removal of the observation. And by using 

Discrete Wavelet Transformation (DWT), the scientists found that the noise produced 

after the conversion has a frequency lower than the frequency of the original observation. 

In order to estimate the noisy signal, Shrinkage is usually used to reduce the risk level or 

reduce the noise or outlier by relying on Thresholding,any appropriate frequency 

threshold setting such that this threshold cancels the noise coefficients and maintains the 

original observation coefficients. This represents the simplest non-linear reduction of the 

wavelet coefficients introduced by (Donoho&Johnston) and thus obtaining a summary of 

the significant transformation coefficients that pass the threshold cut as a test for them so 

that the coefficients are zero if their absolute value is less than a certain threshold cut 

level, attempts to recover a signal )(tg  from noisy anobservation )(ix . 

)17(1,...,2,1,0)()()( −=+= Niiigix   

Therefore, the following basic steps must be taken, which represent a summary of the 

wavelet shrinkage method: 

1- The data are transformed to a different representation called wavelet coefficients 

by the DWT. They are multiplied by an orthogonal matrix W. 
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2- The wavelet coefficients are modified using a thresholding rule. Reducing the 

number of coefficients is the basic of wave shrink. 

3- The inverse discrete wavelet transformation (IDWT) is applied to the modified 

coefficients to obtain an estimate of the signal. So the resulting three-step wavelet 

shrinkage procedure can be summarized by the following diagram:     

 

Diagram (1): steps wavelet shrinkage 

The threshold coefficients )(iW  in step (2) can be defined to be a vector whose nth 

element )(i

nW  is such that 
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The wavelet shrinkage has several good properties that gained this popularity in statistics 

(Donoho .D.L, and Johnostone, I, M., 1995): nearly minmax for a wide range of loss 

function and for general function classes; simple, practical and fast; adaptable to spatial 

and frequency in homogeneities; readily extendable to high dimensions; applicable to 

various problems such as density estimation and inverse problems. 

    2.4: Proposed methods 

The proposed method is use of wavelet shrinkage in multiple linear regression model, 

which depends on the small wave filter after treating it with a threshold, and then using 

the outputs to find the inverse of the (DWT) and get denoisedata, and then use this data 

modified to estimating parameters Bayesian multiple linear regression and calculating 

RMSE and comparing it with the aforementioned classical methods. 

For the purpose of isolating contaminate from the values of observations of the dependent 

variable, one of the types of threshold such as( hard or soft) is usually used by shrinkage 

the detail coefficients, which we can get from re-covering the original observations and 

splitting them into two components using wavelets. The first represents the sum of the 

coefficients Details, while the second represents the smoothing parameters based on 

Multiple Re-Resolution Analysis (MRA), that is: 
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The threshold level is estimated by one of the well-known methods, including the fixed 

from threshold method at level j = 1 only ( )1W . And then using the soft threshold in 

treating the DWT coefficients and by returning the remaining coefficients to the vector 

elements (w) we can get the DWT coefficients of the modified wavelet usually 

symbolized by (W  ), through which it is possible to re-cover the observations of the 

treating dependent variable, i.e.: 

Y W  Ŵ
  DWT thresholding   IDWT 

Wavelet estimate 
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)19(
~

WwY T =  

Depending on the wavelet matrix such as (db7) and (bior1.1), we get the values of 

(observations of the processed dependent variable), which will be used with the 

independent variable in estimating the parameters of the multiple linear regression 

modelsdepending on the methods i.e.: 

 

Finally, the methods 

used will be 

summarized (Bayesian, wavelet Bayesian) in analyzing the multiple linear regression 

models and comparing its efficiency with the presence of outlier and noise values through 

the following diagram: 
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Diagram (2): for proposed method (Wavelet Bayesian) 

3: Application Part 

In this part, a practical comparison was conducted between the methods used in the 

estimation process represented by wavelet Bayesian methodandtraditional Bayesian 

method. To present with a review of the most important approach of minimizing 

contaminated values in the data, the relative efficiency, which is represented by the root 

mean square of error, was calculated. 

3.1: Simulation experiment  

To implement the simulation experiments, different levels of the following factors were 

used sample sizes n,  Where three sample sizes were used, namely 6426 = , 12827 = , 

25628 =  The sample size here should be jn 2=  whereas( j ) a positive integer. When 

the number of parameters (𝑘) is equal to (2, 5, 10) and we contaminate (10%& 40 %) of 

(ei) vector without modifying explanatory variables such that this contaminated values 

can cause outliers. Here original (ei) values are taken from standard normal distribution 

with (zero mean and standard and generated (10%)&(40%) values from Cauchy 

distribution. Obviously, these values produce outliers and contaminate in the data by 

using this formula (7).The explanatory variables independently from a normal 

distribution (with a mean equal to zero and standard deviation equal to one). For the 

frequency of (1000) replications of the assumed regression model and for each of the 

cases shown in the tables (1, 2, 3, 4, 5, 6). 

 

 

 

 

 

 

 

 

 

 

 Figure 5. plot- detect outlier 

 

 

If n=(64 ,128,256) and (40%)contaminate . 
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Figure 1. Standadirazed Residual  plot 

 

Table 1: RMSE values for different estimation methods when (σ = 1, k=2) 

 

 

Method  Estimation RMSE %10 contaminate RMSE %40 contaminate 

n=64 

Bayesian 3.2256 5.1041 

Wavelet Bayesian -bior1.1 2.4271 4.1172 

Wavelet Bayesian -db7 2.2961 3.3961 

n=128 

Bayesian 2.9986 3.6660 

Wavelet Bayesian -bior1.1 2.2305 3.6573 

Wavelet Bayesian -db7 1.9761 3.4092 

n=256 

Bayesian 2.6913 3.6587 

Wavelet Bayesian -bior1.1 1.9074 3.1454 

Wavelet Bayesian -db7 1.7659 2.8753 

If n=(64 ,128,256) and (10%)contaminate . 
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Table 2: 

RMSE 

values for 

different 

estimation 

methods 

when (σ = 

1, k=5)  

Method  Estimation RMSE %10 

contaminate 

RMSE %40 

contaminate 

n=64 

Bayesian 5.2086 7.7043 

Wavelet Bayesian -

bior1.1 

4.0428 6.0413 

Wavelet Bayesian -db7 4.0304 6.4470 

n=128 

Bayesian 4.1984 5.8854 

Wavelet Bayesian -

bior1.1 

3.2687 5.9119 

Wavelet Bayesian -db7 3.1463 5.7411 

n=256 

Bayesian 4.2774 4.0228 

Wavelet Bayesian -

bior1.1 

3.2932 3.6964 

Wavelet Bayesian -db7 3.2013 3.5056 

Method  Estimation RMSE %10 

contaminate 

RMSE %40 

contaminate 

n=64 

Bayesian 4.6845 6.1221 

Wavelet Bayesian -

bior1.1 

3.1489 4.3711 

Wavelet Bayesian -db7 3.2658 3.9746 

n=128 

Bayesian 4.5548 5.0123 

Wavelet Bayesian -

bior1.1 

3.0445 4.3623 

Wavelet Bayesian -db7 2.9937 4.1569 

n=256 

Bayesian 4.3763 5.0136 

Wavelet Bayesian - 2.9301 3.8699 
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Table 3: RMSE values for different estimation methods when (σ = 1, k=10)  

 

 

 

 

 

 

 

 

 

 

 

 

bior1.1 

Wavelet Bayesian -db7 2.9588 3.7126 

Method  Estimation RMSE %10 

contaminate 

RMSE %40 

contaminate 

n=64 
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Table 4: 

RMSE 

values for 

different 

estimation 

methods 

when (σ = 

5, k=2) 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5: RMSE values for different estimation methods when (σ = 5, k=5) 

 

 

Bayesian 5.1212 6.8818 

Wavelet Bayesian -

bior1.1 

4.0083 5.9054 

Wavelet Bayesian -db7 4.1138 6.0655 

n=128 

Bayesian 4.1335 5.8130 

Wavelet Bayesian -

bior1.1 

 3.3685 5.4831 

Wavelet Bayesian -db7 3.3035 5.2851 

n=256 

Bayesian 4.2228 4.1289 

Wavelet Bayesian -

bior1.1 

3.4318 3.6190 

Wavelet Bayesian -db7 3.3775 3.3836 

Method  Estimation RMSE %10 

contaminate 

RMSE %40 

contaminate 

n=64 

Bayesian 6.2432 8.4332 

Wavelet Bayesian -

bior1.1 

4.5642 6.4688 

Wavelet Bayesian -db7 4.6651 6.8378 

n=128 

Bayesian 5.4227 6.8125 

Wavelet Bayesian -

bior1.1 

3.9859 6.3828 

Wavelet Bayesian -db7 3.9329 6.2285 

n=256 

Bayesian 5.4918 5.3023 

Wavelet Bayesian -

bior1.1 

4.0354 4.4214 

Wavelet Bayesian -db7 3.9791 4.2590 

Method  Estimation RMSE %10 

contaminate 

RMSE %40 

contaminate 

n=64 

Bayesian 5.5316 7.6691 

Wavelet Bayesian -

bior1.1 

4.2156 6.3495 

Wavelet Bayesian -db7 4.0412 6.4866 

n=128 

Bayesian 5.3765 6.7349 

Wavelet Bayesian - 4.1178 5.9663 
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Table 6: RMSE values for different estimation methods when (σ = 5, k=10) 

The Simulation Results 

The results in Tables (1, 2, 3, 4, 5 and 6) indicate that the allRMSE values of the models 

estimated using the wavelet Bayesian method is less than the RMSE value of the models 

estimated using the Bayesian method and they gave the best estimate of the model used in 

the (db-7) and (bior1.1) wavelet. This result means that the models estimated using 

thewavelet Bayesian method is better than the Bayesian method. 

 

3.2: The Real data 

The data set consists of seven variables for (32) countries. Gunst and Mason (1980, 

Appendix A), indicate that these data are a subset of a larger data set (data set 41 of 

Loether et al., 1974). We use the same nomenclature as Gunst and Mason (1980), from 

which the data were taken, namely,  

1X :Infant deaths per 1000 live births (INFD).  

2X :Number of inhabitants per physician (PHYS).  

3X :Population per square kilometer (DENS). 

4X :Population per 1000 hectares of agricultural land (AGDS). 

5X :Percentage literate of population aged 15 years and over (LIT). 

6X :Number of students enrolled in higher education per 100,000 populations (HIED).  

Y: gross national product per capita, 1957 U.S. dollars (GNP). 

Let us fit a linear model relating the GNP to the remaining six variables plus a constant 

column, that is,  

 i6655443322110  +X+X X X  X + X + = Y  +++  

 

bior1.1 

Wavelet Bayesian -db7 4.0708 5.7766 

n=256 

Bayesian 5.4554 5.3816 

Wavelet Bayesian -

bior1.1 

4.1958 4.3577 

Wavelet Bayesian -db7 4.1473 4.1617 
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Figure 2. Standadirazed Residual  plot 

Table 7: RMSE values for different estimation methods  

 

 

 

 

 

 

 

 

 

From Table (7) that the proposed method (Bayesian wavelet- bior1.1) method shows root 

mean squares of error (RMSE) less than the method (Bayesian). 

 

4: Counclusion 

1- The proposed method(wavelet Bayesian) was better than the Bayesian method for 

multiplelinear regression based on RMSE. 

2- The proposed method reduced noise while also solving the problem of data 

contamination. 

3- Using real data, the proposed method (wavelet Bayesian bior1.1) outperforms the 

(wavelet Bayesian db7) based on RMSE. 

 

5: Recommendations 

1- Estimation of nonlinear models using the same technique.  

2- A comparison of several types of thresholding with wavelets in Bayesian multiple 

regression estimation 

3- Applying the proposed method tominimize the problem of data contamination and 

estimate the Bayesian model for multiple regression. 
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Appendix  

clc 

clear all 

o=1; 

while o<=1000 

n=256; 

k=2; 

xe=randn(n,k); 

xa1=xe(:,1); 

xb2=xe(:,2); 

xii=[ones(size(xa1)) xa1 xb2 ] 

ri1=randn(n,1) 

rri=ri1*5 

pdf1 = makedist('tLocationScale','mu',30,'sigma',1,'nu',3) 

noises1 = random(pdf1,n,1); 

pdf2 = makedist('tLocationScale','mu',0,'sigma',8,'nu',4) 

pdf3 = makedist('tLocationScale','mu',22,'sigma',1,'nu',4) 

noises3 = random(pdf3,n,1); 

rr2=noises3(1:n/4) 

s=size(rr2);z=size(rri)% (find size of both) 

rd1=[rr2;zeros(z(1)-s(1),1)] % concatenate the smaller with zeros 

rei1=[rri+rd1] 

yy=xii*[2;-2;0.5]+rei1 

beta1=inv(xii'*xii)*(xii'*yy) 

yyhad1=xii*beta1 

eei=yy-yyhad1 

p=1:n; 

[TF,L,U,C] = isoutlier(eei); 

plot(p,eei,p(TF),eei(TF),'p',p,L*ones(1,n),p,U*ones(1,n),p,C*ones(1,n)) 

legend('Original Data','Outlier','LowerThreshold','UpperThreshold','Center Value') 

clear WST 

[ca,cd] = dwt(yy,'db7',n); 

%estimate of delta(level of thresholding)for haar wavelet filter 

MAD=median(abs(cd)); 

sigmaMAD=MAD/0.6745; 

D=sigmaMAD*((2*log(n))^0.5); 

%soft thresholding for haar wavelet filter 

W=[ca;cd]; 

for i=1:n 

if W(i)>0 

signW(i)=1; 

else if W(i)==0 

signW(i)=0; 

else 

signW(i)=-1; 

end 
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end 

end 

signW'; 

for i=1:n 

plus(i)=abs(W(i))-D; 

if plus(i)<0 

plus(i)=0; 

else 

plus(i)=plus(i); 

end 

end 

plus'; 

for i=1:n 

WST(i)=signW(i)*plus(i); 

end 

 WST=WST'; 

cd=WST(n/2+1:n); 

  yh1 = idwt(ca,cd,'db7',n) 

wavedl=fitlm(xe,yh1) 

robwav=fitlm(xe,yh1,'RobustOpts','cauchy') 

ols=fitlm(xe,yy) 

rob=fitlm(xe,yy,'RobustOpts','cauchy') 

   %baysian method 

n1=(1:(n/2)); 

n2=((n/2+1):n); 

y1=yy(1:n/2); 

y2=yy((n/2+1):n); 

x1 = xii(1:n/2, :); 

x2 = xii((n/2+1):n, :); 

%('Informative Prior Information'); 

n1=length(x1); 

k1= 2 %No. of Prior variables; 

v=(n1-k1-1); 

bI=inv(x1'*x1)*(x1'*y1); 

SSEI=(y1'*y1)-(bI'*x1'*y1); 

MSEI=SSEI/(n1-k1-1); 

 

%disp('Bayesian Method by using Non-Informative Prior'); 

n2=length(x2); 

k2= 2; 

v1=(n2-k2-1); 

bn=inv(x2'*x2)*(x2'*y2); 

SSEn=(y2'*y2)-bn'*x2'*y2; 

MSEn=SSEn/(n2-k2-1); 

sigma_bni =sqrt((v1*MSEn)/(v1+2)); 

%disp('Bayesian Method by using Informative Prior'); 
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f=n2+v; 

A=(x1'*x1); 

b_Bayse=inv(x2'*x2+A)*(x2'*y2+A*bI) 

sst_B=(y2'*y2)-(n2*mean(y2)^2); 

sse_B=(y2'*y2)-(b_Bayse'*x2'*y2); 

f_S2B=SSEI*SSEn; 

Sigma2_Bayse=(f_S2B)/(f+2); 

Sigma_Bayse=sqrt((f_S2B)/(f+2)); 

ssr_B=sst_B-sse_B; 

R2B=ssr_B/sst_B; 

% wavelet baysian method 

n1=(1:n/2); 

n2=((n/2+1):n); 

y1w=yh1(1:n/2); 

y2w=yh1((n/2+1):n); 

x1 = xii(1:n/2, :); 

x2 = xii((n/2+1):n, :) ; 

%('Informative Prior Information'); 

n1=length(x1); 

k1= 2 %No. of Prior variables; 

v=(n1-k1-1); 

bIw=inv(x1'*x1)*(x1'*y1w); 

SSEIw=(y1w'*y1w)-(bIw'*x1'*y1w); 

MSEIw=SSEIw/(n1-k1-1); 

 

%disp('Bayesian Method by using Non-Informative Prior'); 

n2=length(x2); 

k2= 2; 

v1=(n2-k2-1); 

bnw=inv(x2'*x2)*(x2'*y2w); 

SSEnw=(y2w'*y2w)-(bnw'*x2'*y2w); 

MSEnw=SSEnw/(n2-k2-1); 

sigma_bniw =sqrt((v1*MSEnw)/(v1+2)); 

 

%disp('Bayesian Method by using Informative Prior'); 

f=n2+v; 

A=(x1'*x1); 

b_Baysew=inv(x2'*x2+A)*((x2'*y2w+A*bIw)) 

sst_Bw=(y2w'*y2w)-(n2*(mean(y2w))^2); 

sse_Bw=(y2w'*y2w)-(b_Baysew'*x2'*y2w); 

f_S2Bw=SSEIw*SSEnw; 

Sigma2_Baysew=(f_S2Bw)/(f+2); 

Sigma_Baysew=sqrt((f_S2Bw)/(f+2)); 

ssr_Bw=sst_Bw-sse_Bw; 

R2Bw=(ssr_Bw)/(sst_Bw); 

mserobwve(o)=robwav.RMSE; 
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msewave(o)=wavedl.RMSE; 

mserob(o)=rob.RMSE; 

mseols(o)=ols.RMSE; 

mse_bz(o)=sqrt(sse_B /(n-k-1)); 

mse__bzwv(o)=sqrt(sse_Bw /(n-k-1)); 

o=o+1;  

end 

Mmse_robwv=mean(mserobwve) 

Mmse_wv=mean(msewave) 

Mmse_rob=mean(mserob) 

Mmse_ols=mean(mseols) 

Mmse_bays=mean(mse_bz) 

Mmse_bayswv=mean(mse__bzwv) 

 

(Demographic Data) 

 

Obs. X1 X2 X3 X4 X5 X6 Y 

1 19.5 860 1 21 98.5 856 1316 

2 37.5 695 84 1720 98.5 546 670 

3 60.4 3000 548 7121 91.1 24 200 

4 35.4 819 301 5257 96.7 536 1196 

5 67.1 3900 3 192 74 27 235 

6 45.1 740 72 1380 85 456 365 

7 27.3 900 2 257 97.5 645 1947 

8 127.9 1700 11 1164 80.1 257 379 

9 78.9 2600 24 948 79.4 326 357 

10 29.9 1400 62 1042 60.5 78 467 

11 31 620 108 1821 97.5 398 680 

12 23.7 830 107 1434 98.5 570 1057 

13 76.3 5400 127 1497 39.4 89 219 

14 21 1600 13 1512 98.5 529 794 

15 27.4 1014 83 1288 96.4 667 943 

16 91.9 6400 36 1365 29.4 135 189 

17 47.6 650 108 1370 97.5 258 490 

18 22.4 840 2 79 98.5 445 572 

19 225 5200 138 2279 19.3 220 73 

20 30.5 100 40 598 98.5 362 550 

21 48.7 746 164 2323 87.5 362 516 

22 58.7 4300 143 3410 77 42 316 

23 37.7 930 254 7563 98 750 306 

24 31.5 910 123 2286 96.5 36 1388 

25 68.9 6400 54 2980 38.4 475 356 

26 38.3 980 1041 8050 57.6 142 377 

27 69.5 4500 352 4711 51.8 14 225 

28 77.7 1700 18 296 50 258 262 
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29 16.5 900 346 24855 98.5 923 836 

30 22.8 700 9 170 98.5 839 1310 

31 71.7 2800 10 824 38.4 110 160 

32 20.2 946 11 3420 98.5 258 1130 

 

 


