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ABSTRACT 

When a parameter is changed, it does have a corresponding effect on the functional output- 

analytic in output through a chain reaction. Several studies have emphasised the influence of 

shading devices and window openings concerning the regulation of indoor thermal comfort 

within regular building forms. However, a relatively small body of research is concerned with 

the shape optimisation of free-form buildings in the control of solar radiation for the benefit 

of thermal comfort and building performance. This study explores the use of parametric 

design principles at the preliminary stage of the building design to enhance its optimisation 

by manipulating shading devices to reduce direct solar heat gains. This study was approached 

as a quantitative simulation study linked to the environmental factors (temperature, humidity, 

carbon dioxide, solar radiation, and humidity ratio) that can influence a buildings' 

performance. The study proposed a machine learning linear regression model for 

environmental factor prediction and design of a project comprising irregular forms 
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reproduced in Rhinoceros software and simulated based on on-site responses to radiation was 

utilised. Rhinoceros was used with its graphical algorithm editor, Grasshopper, which allows 

the freedom to create algorithmic relationships for design processes visually. Data returned 

from the analysis using Rhinoceros software and plugins was analysed using Microsoft's 

Excel. Results obtained revealed that the simulation technique generates shading systems that 

counter excessive radiation of the building envelope and enhance thermal comfort from the 

design stage. It was evident from the data that shows that the amount of radiation exposure on 

the building façade reduced by 60% in all the months of the year after the introduction of the 

shading device system. The adoption of parametric design methods to optimise building 

performance leads to the choice of solutions that ensure considerable thermal comfort level 

whilst maintaining the aesthetical and visual quality of the building.    

 

INTRODUCTION 

The optimisation is usually done after a building has been constructed. 

However, early design stages programming and building specifications can 

identify up to 80% of environmental pollutant contributions and building 

operating expenses (Aliero, Qureshi, Pasha, Ghani, & Yauri, 2021). The scope 

of increasing building performance has shrunk as design procedures have 

advanced, while the expenses of building optimisation have risen (Aliero, 

Qureshi, Pasha, & Jeon, 2021).  Several studies like Acquaah, Steele, 

Gokaraju, Tesiero, & Monty (2020); Aliero, Qureshi, Pasha, Ghani, et al. 

(2021); Okafor, Ali, Modi, Duku,and Dodo (2020); Syed Ariffin, Dodo, 

Nafida & Kamarulzaman (2015) have underlined the relevance of decisions 

taken at the early design stage. 80% of a building project's expenses would 

have been established by the conclusion of the conceptual design stage 

(Okafor Christian Izuchukwu  & Pitya Peter Marino Modi 2020). In many 

ways, the decisions taken at the designing phase greatly influence the 

building's efficiency. A building constructed to high-quality, for example, can 

spend 40% less energy than a structure planned to low-quality by altering 

design factors such as form, orientation, and envelope configuration 

(Mahmoud, Ahmad, Yatim, & Dodo, 2020). The design process initiates the 

narrative of the design by following a set of requirements needed to achieve 

design objectives (Van Langen & Brazier, 2006). During the preliminary 

design process, understanding design requirements depends on the designer's 

intuition, who is focused on a limited scope of performances like functionality 

and aesthetics (Turrin, Von Buelow, & Stouffs, 2011). Modern buildings 

comprise complex products comprising several fragments meant to perform 

various functions (Eltaweel & Yuehong, 2017). To mitigate errors in building 

construction emanating from the complexities involved in the building design 

process and ensure that buildings perform at their best, the building design 

process is often accompanied by evolutionary decision-making from the 

beginning of the design to the final stages. Complexities involved in the 

design process are associated with the quest to initiate new forms, design 

strategies, structural concepts, technical and environmental considerations 

(Alalouch, 2018).  However, traditional design approaches are still being 

employed in projects despite the challenges encountered with complex 

designs.  
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Transition  

 

EnergyPlus, Virtual Environment, Trnsys,  eQuest, Esp-r, IES, and DeST are 

examples of building simulation software that can do dynamic energy 

consumption simulations. The fact that large volumes of data are required 

during modeling is something that all of these programs have in common, 

even if most aspects aren't completed until later in the design process.  

 

Design builder is one of the common building performance optimisation 

software that supports machine learning models to predict the building 

performance's potential outcome during the design stage. Therefore, this study 

employed building simulation and machine learning to aid the design process 

and prediction outcome in the design stages leading to decisions that have a 

major influence on the outcome of the building in terms of performance 

(Østergård, Jensen, & Maagaard, 2016).   The application of computer 

simulations during building optimisation at the design stage requires that the 

different parameters about the building are tested and accounted. A systematic 

process of optimisation at the design stage includes establishing parameters, 

determining constraints, identifying goals, selecting the optimisation 

algorithm, conducting simulations, and displaying the final results (Østergård 

et al., 2016). Hence, parametric design involves manipulating building 

parameters through the utilisation of digital technology based on computer 

hardware and software.  

 

Transition  

 

The organisation of the study is as follows: Section II described a literature 

review related work. Section III describes the methodology. Section IV 

presents the experiment, and finally, Section V concludes the study. 

 

LITERATURE REVIEW  

Parametric design is a process based on algorithmic thinking that enables the 

expression of parameters and rules that combine to define the relationships 

between the design intent and design response (Oxman & Gu, 2015).  

Implementation of these optimisation tools and techniques from the initial 

stages of the design to the final stages will ensure that the building will 

perform close to the digital model or exceed the expectations of the design 

intent. It also ensures that all the constraints that may negatively affect the 

project will be accounted for and lead to a wholesome design in thought, 

process, and execution. Parametric designs are approached from two broad 

perspectives. The first approach regards all designs as parametric due to 

considering parameters such as orientation, solar radiation, and wind (Gerber, 

2007; Hudson, 2010).   
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Transition  

 

The second approach regards parametric design as dependent on the use of 

tools such as Revit, Grasshopper, Maya MEL, Rhino Scripting to enhance 

design by the simultaneous interconnection and coordination of design 

components (Woodbury, 2010). According to Hudson (2010), Parametric 

design entails the examination of multifarious solutions to architectural design 

challenges through the utilisation of parametric models. In parametric design, 

parameters in the parametric model are often manipulated to explore 

alternative solutions to challenges (Hernandez, 2006). It implies that available 

parameters are used to define a form by interchanging values of the parameters 

without having to erase or redraw.  

 

Several methods cutting across disciplines have been employed to generate 

parametric models to enhance building design optimisation. Some techniques 

used in applying parametric design for building optimisation involve two 

phases; simple (preliminary) optimisation and detailed optimisation to 

investigate various situations (Eisenhower, 2012). Current research involving 

parametric design for building optimisation has focused on optimisation of 

façade to enhance indoor quality. Lee, Han presented significant analysis and 

discussion, and Lee (2016) compared the conventional approach with genetic 

algorithms to create optimal indoor lighting situations by adjusting louvre 

shapes and window patterns. Their study revealed that Computer-assisted 

daylight simulation could aid the design of shading devices, especially when 

dealing with a large amount of data and non-linear relationships. Daylighting 

provides lofty quality light while reducing energy consumption when 

fenestrations are properly designed for glare control and reduced solar heat 

gain (Munaaim, Al-Obaidi, Ismail, & Rahman, 2014; Reinhart, Mardaljevic, 

& Rogers, 2006).  Consequently, several studies have emphasised the 

influence of shading devices and window openings regarding the regulation of 

indoor thermal comfort within regular building forms (Al-Masrani, Al-Obaidi, 

Zalin, & Isma, 2018; Lee et al., 2016; Tzempelikos & Shen, 2013).  

 

Transition  

 

However, a relatively small body of research is concerned with shape 

optimisation of free form buildings in the control of solar radiation for the 

benefit of thermal comfort and energy performance (Zhang, Zhang, & Wang, 

2016). It seems possible that the lack of research utilising parametric design 

principles for the optimisation of free-form buildings is due to the 

complexities involved in deriving algorithmic formulas to describe shapes and 

volumes. Therefore, this study explores the use of parametric design principles 

at the preliminary stage of the building design to enhance its optimisation by 

manipulating shading devices to reduce direct solar heat gains.  

 

 
 

 



EXPERIMENTATION OF PARAMETRICISM FOR DESIGN OPTIMISATION IN PREDICTING BUILDING PERFORMANCE                                    PJAEE, 19 (1) (2022)

              

 
 

 

87 
 

METHODOLOGY 

  

Unit of Analysis and Location 

 

This study was approached as a quantitative simulation study linked to the 

environmental factors that can influence the performance of a building, 

particularly solar radiation. To this end, the design of a project comprising 

irregular forms was reproduced in Rhinoceros version 6 software and 

simulated based on on-site responses to radiation. The proposed research 

centre is located in the Federal Capital Territory (FCT) Abuja; hence, 

environmental data of the FCT was used for the simulation. The climate of 

Abuja is tropical, with an average annual temperature of 25.7°C. With latitude 

9°3'28" N and 7°29'42" E, the city lies 477m above sea level. 

 

Instruments 

  

To simulate environmental and weather-related analysis by creating visual 

algorithmic relationships between necessary information to create visual 

feedback of the weather data, the ladybug plugin was utilised (Roudsari, Pak, 

& Smith, 2013). It ascertains the radiation analysis and introduces shading 

devices as intervening variables in the study model. The Rhinoceros tool was 

used due to its ability to rapidly compose, adjust and evaluate discrete design 

alternatives and provide feedback on the impact of a given design choice 

(Elbeltagi, Wefki, Abdrabou, Dawood, & Ramzy, 2017). However, the 

software-generated data presents the radiation on the building geometry and 

colour-coded the effect of the radiation from blue (good/ acceptable) to red 

(bad/not optimum).  

 

Data Collection Process  

 

In the simulation, the massing of the building envelope was needed, so the 

first step was to produce a simple massing of the building envelope, as shown 

in Figure 1. It is important to note that a simplified massing is needed to 

generate the required result except in specific cases, where a higher level of 

detail is necessary for the analysis like interior designs (Suyoto, Indraprastha, 

& Purbo, 2015).  An overly detailed massing will cause the algorithm to take 

an unnecessarily long to compute, and the information obtained will not make 

much of a difference. After the massing has been produced, the environmental 

simulation is the next process; this is done using the ladybug plugin for 

Grasshopper. The simulation carried out was the radiation analysis to check 

for solar exposure on the building. The building mass is used as the reference 

geometry, after which the analysis is carried out, and the result is displayed 

with the building geometry showing the building envelope radiation exposure, 

with a colour gradient from blue to red attached to it (red for really hot areas 

and blue for cool areas) as shown in Figure 2. The analysis is based on the 

weather information for January.  
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Figure  1: Image showing the level of detail of the building mass used for the 

analysis. 

 

 
 

Figure 2: Image showing the results of the radiation analysis on the building 

mass (for January)  

 

After the radiation analysis is carried out, the parts of the building mass that 

will be more exposed the most to direct sun rays are revealed. This 

information is then used to locate functional spaces, openings and specifically 

design the shading devices for this study. To create the shading devices, 

multiple variations were tested. Since multiple iterations will be made and 

tested, remodeling these variations will take an ample amount of time. Hence, 

an algorithm was designed for the entire design process of the shading device 

to avoid painstakingly remodeling different variations. 

  

The result obtained from the radiation analysis of the building mass is then 

used to model the shading devices on the building façade, as shown in Figure 

3. After the shading device has been modeled, another analysis is run with 

shading as a "context" to check the effect of the shading system with specific 

parameters on the building mass. The parameters included the size and shape 

of the shading devices.  This process is repeated until the desired result is 

acquired. It is evident from the outcome, as shown in Figure 4 that the shading 
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system has reduced the amount of radiation on the building envelope.  The 

blue surface of the model shows the level of cooling on the façade.  

 

 
 

Figure 3: Image showing the shading device on the mass model 

    

 
 

Figure 4: Image showing the result of the radiation analysis after the shading 

device has been applied (for January) 

 

Pre-Processing  

 

The dataset normality probability test is a statistical data pre-processing test 

that provides useful information about the structure of the raw dataset and is 

an appropriate approach for creating a model that fits the dataset and 

accurately predicts the target variable. Several mathematical approaches for 

data processing, such as regression, correlation, t-tests, and variance analysis, 

are utilised to establish inferences regarding the dataset's normalcy. Based on 

the current total probability theorem, violation of normality is not a major 

concern if the number of observations in the sample selection is 200 or more. 

 

Normality Test 

 

The statistical analysis summary of the dataset is provided by the normalcy 

test result using a parametric test presented in Table 1 to convey as much 



EXPERIMENTATION OF PARAMETRICISM FOR DESIGN OPTIMISATION IN PREDICTING BUILDING PERFORMANCE                                    PJAEE, 19 (1) (2022)

              

 
 

 

90 
 

detail as feasible in the simplest way possible. To explain the fundamental 

features of the data in a dataset sample, this statistical summary is presented in 

a few terms: mean and standard deviation, skewness, kurtosis, and so on. To 

guarantee a constant dataset sampling rate, unwanted records were removed 

(with more than three missing columns and the same number of data streams 

on consecutive days). The dataset was presented in the study. 

 

Table: 1 Statistical analysis result of the dataset 

 

 Date Humidity Humidity Ratio Temperature  CO2 Light  Occupancy 

Count 2564 2564 2564 2564 2564 2564 2564 

Average 2.3E4 311 193.8 25.35 193.8 25.35 2.394 

Standard 

deviation 

2.1E3 2.03 292.7 21.7 2.03 292.7 21.7 

Coeff. of 

variation 

5.31% 5.1% 8.10% 135% 5.31% 5.1% 8.10% 

Minimum 2.4E4 4.1 193.8 25.35 193.8 25.35 2.394 

Maximum 4.4E4 8.1 123.8 26.35 193.8 25.35 2.394 

Range 7.1E2 6.10 7.1E2 6.10 6.10 7.1E2 9.0 

Stnd. 

skewness 

-1089.21 17.8 14.1 16.01 16.56 13.643 18.63 

Stnd. 

kurtosis 

28130.2 -6.4 -2.85 -5.70 -7.71 -7.743 -5.77 

 

The pre-processing applies forward fill and reverse fill on the original streams. 

Table 1 contains 2564 measurements for each selected data variable from the 

whole stream. It also provides standardised skewness and standardised 

kurtosis, which are used to determine if the sample is from a normal 

distribution. The dataset's standardised skewness and kurtosis values, on the 

other hand, are not in the -2 to +2 range, suggesting substantial deviations 

from normality, which would likely contradict the normally distributed data 

theory assumption. 

 

Q-Q Plot Normality Test  

 

Since the computed kurtosis of the sample dataset in data analysis in Table 1 is 

outside the range of -2 to +2, the graphic representation of normality of the 

sample dataset is performed using the Q-Q plot to verify. Outliers in the 

dataset sample might occasionally cause this to happen. Outliers are values in 

a dataset sample that are out of the norm, and they can distort statistical 

modeling and contradict hypotheses. They can occur due to erroneous reading. 

As a result, the observer must decide how to proceed when such values are 

noticed. Outliers are thought to lead to incorrect predictions in many 

situations; therefore, it's better to remove them from the dataset. 
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Figure 5: Humidity and Temperature  Normality Distribution  

 

  
 

Figure 6: Occupancy and Humidity Ratio  Normality Distribution  

 

EXPERIMENT  

When machine learning algorithms are used to generate predictions on data to 

assess their prediction accuracy, data is divided into ratios during model 

training. The approach aids in evaluating the output of machine learning 

algorithms and selecting the best technique for the model prediction issue. The 

method is shuffling and dividing the original information into training and test 

ratios, such as 50:50, which is part of the method. The training dataset is the 

first part of the process, and it is used to match the model. The test dataset is 

utilised as input to the variables dataset, which feeds the model and tests and 

quantifies prediction outputs. 
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To better understand the variables in machine learning architecture for 

estimate, linear regression models were chosen for investigation. This model is 

less complicated and exciting than many more recent advancements in this 

field, but it is well-known and frequently used as a performance benchmark. 

Aside from performance prediction, this model can make solid predictions in 

various other applications, all of which are well served by machine learning 

libraries. Both algorithms in this paper use the scikit-learn Python library, and 

the archive documentation contains information on the default algorithm 

parameters. 

 

Prediction Result 

 

To construct and test a model, environmental data were gathered utilising 

statistical and machine learning techniques. The study results of the five 

indoor environmental factors for model training and testing displayed in Table 

2 show that the probability confidence score for both mean and standard 

deviation has attained a minimum of 0.75. As the number of individuals in the 

room grows, so does the number of prediction mistakes. An interactive 

learning technique was utilised to collect indoor environmental data to 

communicate information with users. 

 

 Table 2: Result of linear regression prediction on indoor environmental variables 

 

T e m p e r a t u r e H u m i d i t y L i g h t C O 2 H u m i d i t y  R a t i o O c c u p a n c y S c o r e  M e a n S c o r e  S t a n d a r d  D e v i a t i o n 

0 . 4 4 1 4 8 2 1 . 5 7 8 9 - 0 . 7 7 2 5 5 1 . 0 7 5 2 2 4 1 . 1 7 5 5 9 7 0 . 9 2 8 2 5 9 1 . 0 6 2 6 7 8 0 . 3 2 5 3 7 1 

- 0 . 8 1 1 7 8 - 1 . 2 7 0 5 5 - 0 . 7 7 2 5 5 - 0 . 9 1 2 8 5 - 1 . 1 3 4 8 4 - 0 . 8 5 2 8 - 0 . 8 7 6 1 8 0 . 3 2 4 3 9 2 

- 0 . 2 6 1 2 5 - 0 . 2 0 3 7 2 1 . 0 0 1 9 4 2 0 . 0 9 4 8 6 1 - 0 . 2 7 5 6 0 . 2 1 5 8 3 7 0 . 0 8 5 0 2 6 0 . 3 2 4 5 9 4 

1 . 3 1 5 8 4 8 2 . 3 5 2 1 6 6 1 . 0 0 1 9 4 2 2 . 2 2 5 9 1 2 2 . 1 5 0 8 4 5 2 . 3 5 3 1 0 3 2 . 2 4 3 1 7 8 0 . 3 2 5 4 5 6 

0 . 7 2 3 2 2 2 1 . 1 1 0 8 3 5 1 . 4 4 5 5 6 4 1 . 5 6 7 6 2 7 1 . 0 0 4 1 4 7 1 . 6 4 0 6 8 1 1 . 5 6 3 1 3 1 0 . 3 2 5 0 4 4 

- 0 . 5 3 0 0 4 - 0 . 1 9 0 7 1 - 0 . 7 7 2 5 5 - 0 . 5 8 2 7 3 - 0 . 3 7 4 8 5 - 0 . 4 9 6 5 9 - 0 . 5 9 3 5 0 . 3 2 4 0 6 9 

1 . 5 4 4 1 5 5 0 . 0 2 5 8 6 8 2 . 0 1 8 0 7 8 0 . 9 1 7 7 1 7 0 . 6 4 8 2 9 5 0 . 9 2 8 2 5 9 0 . 8 9 2 6 4 7 0 . 3 2 5 2 6 4 

1 . 4 1 3 2 . 2 6 2 5 2 2 1 . 0 8 6 8 6 9 2 . 2 3 6 1 6 5 2 . 1 4 2 1 2 8 2 . 3 5 3 1 0 3 2 . 2 5 6 8 6 6 0 . 3 2 5 4 0 6 

1 . 0 5 8 3 9 6 - 0 . 1 9 0 7 1 0 . 9 3 0 0 0 3 0 . 3 2 9 8 4 1 0 . 2 8 3 6 2 4 0 . 2 1 5 8 3 7 0 . 3 0 0 9 0 2 0 . 3 2 4 6 6 6 

- 1 . 1 1 2 9 5 - 1 . 0 5 2 9 4 - 0 . 7 7 2 5 5 - 0 . 9 4 7 5 9 - 1 . 1 1 0 6 5 - 0 . 8 5 2 8 - 0 . 9 0 8 7 3 0 . 3 2 4 3 0 4 

0 . 4 6 8 1 9 8 1 . 6 1 5 8 5 3 - 0 . 7 7 2 5 5 1 . 1 3 8 1 7 1 . 2 1 2 9 3 4 1 . 2 8 4 4 7 1 . 1 2 7 6 3 8 0 . 3 2 5 4 6 8 

2 . 2 5 2 3 9 1 0 . 4 0 8 7 3 7 1 . 1 2 9 8 3 3 0 . 2 9 2 0 7 3 1 . 2 5 6 5 7 1 0 . 2 1 5 8 3 7 0 . 2 4 7 4 4 6 0 . 3 2 8 2 1 8 

0 . 3 4 4 3 3 1 . 1 5 1 0 7 2 1 . 1 8 8 1 8 3 1 . 4 0 1 5 1 8 0 . 8 5 0 2 4 8 1 . 2 8 4 4 7 1 . 3 9 1 4 6 2 0 . 3 2 5 1 7 

- 0 . 1 7 6 4 0 . 0 9 1 7 6 7 1 . 0 3 2 3 1 6 0 . 2 5 3 7 9 3 - 0 . 0 5 6 2 4 0 . 2 1 5 8 3 7 0 . 2 3 6 7 9 7 0 . 3 2 4 5 6 3 

- 0 . 2 2 8 8 7 - 0 . 0 7 1 6 5 1 . 0 4 1 9 0 8 0 . 0 7 6 7 4 6 - 0 . 1 8 0 0 9 - 0 . 1 4 0 3 7 0 . 0 5 9 3 5 6 0 . 3 2 4 5 9 4 

- 0 . 7 1 4 6 3 - 0 . 1 6 0 6 1 - 0 . 7 7 2 5 5 - 0 . 7 6 8 1 5 - 0 . 4 2 9 4 1 - 0 . 8 5 2 8 - 0 . 7 8 2 8 6 0 . 3 2 4 3 5 1 

1 . 7 7 2 4 6 1 0 . 2 0 6 1 8 3 0 . 5 7 9 6 3 4 0 . 9 5 5 5 9 8 0 . 8 8 0 6 4 1 0 . 9 2 8 2 5 9 0 . 9 4 7 6 6 5 0 . 3 2 5 5 1 8 

- 1 . 1 1 2 9 5 - 1 . 0 8 9 8 9 - 0 . 7 7 2 5 5 - 0 . 9 6 1 2 7 - 1 . 1 3 2 4 4 - 0 . 8 5 2 8 - 0 . 9 2 1 0 3 0 . 3 2 4 3 2 8 

- 0 . 9 0 8 9 3 - 1 . 2 2 7 4 4 - 0 . 7 7 2 5 5 - 0 . 9 4 1 6 1 - 1 . 1 4 2 8 6 - 0 . 8 5 2 8 - 0 . 9 0 3 5 2 0 . 3 2 4 3 3 9 

0 . 3 4 4 3 3 1 . 4 9 6 7 8 3 - 0 . 7 7 2 5 5 0 . 9 7 5 8 2 1 1 . 0 7 4 6 0 9 0 . 9 2 8 2 5 9 0 . 9 6 0 6 1 5 0 . 3 2 5 2 5 8 

1 . 7 1 4 1 7 1 . 5 1 7 3 1 3 1 . 0 8 1 8 7 4 1 . 5 4 9 1 7 1 1 . 7 8 1 0 4 4 1 . 6 4 0 6 8 1 1 . 5 5 3 0 3 1 0 . 3 2 4 7 8 5 

0 . 9 2 7 2 4 1 1 . 9 4 8 4 2 5 - 0 . 7 7 2 5 5 1 . 5 8 2 4 9 5 1 . 6 6 6 9 5 3 1 . 6 4 0 6 8 1 1 . 5 9 0 1 6 7 0 . 3 2 6 1 9 8 

- 0 . 8 6 0 3 5 - 0 . 4 7 4 0 2 - 0 . 7 7 2 5 5 - 0 . 8 5 7 0 2 - 0 . 6 7 4 4 4 - 0 . 8 5 2 8 - 0 . 8 5 5 2 8 0 . 3 2 4 1 1 6 

1 . 2 2 8 4 1 1 2 . 2 2 2 4 9 0 . 9 3 0 0 0 3 1 . 9 6 4 4 4 3 2 . 0 1 3 6 7 7 1 . 9 9 6 8 9 2 1 . 9 7 0 0 5 6 0 . 3 2 5 1 
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RESULTS AND DISCUSSION  

Data returned from the analysis using Rhinoceros software and plugins was 

analysed using Microsoft's Excel. The analysis was carried out by creating a 

table showing the range of values from the radiation per square meters values 

of each month before and after the introduction of the shading system; the 

amount of heat that was observed to have been reduced from the shading 

system showed its effectiveness in reducing heat gained by the building 
 

This study's scope involves optimising the building envelope through the use 

of parametric tools to manipulate shading devices to reduce direct solar heat 

gains whilst maximising indoor thermal comfort. Consequently, the minimum 

and maximum solar radiation values on the building mass measured in 

kilowatt-hours per square meter (Kwh/m2) was measured before and after the 

shading device was introduced to the building. Table 1 reveals the difference 

in the minimum and maximum values, indicating the radiation or solar 

exposure level before and after the shading devices were introduced. The 

results are presented from January to December as obtained from the 

simulation analysis. 

 

Table 3: Radiation analysis showing before and after introduction of shading 

devices 

 

Month  Minimum 

(Before) 

Kwh/m² 

Maximum 

(Before) 

Kwh/m² 

Minimum 

(After) 

Kwh/m² 

Maximum  

(After) 

Kwh/m² 

January  19.27 192.67 19.27 77.07 

February 18.81 188.1 18.81 75.24 

March  21.85 218.5 21.85 87.4 

April  20.66 206.57 20.66 82.63 

May  18.8 188.03 18.8 75.21 

June 16.21 162.14 16.21 64.86 

July  16.2 161.98 16.2 64.79 

August  16.4 164.03 16.4 65.03 

September 15.91 159.08 15.91 63.63 

October 17.58 175.8 17.56 70.32 

November 17.31 173.08 17.31 69.23  

December 17.65 176.55 17.65 70.62 

 

The solar radiation measured in Kwh/m2 is a measure of how much radiation a 

surface is exposed to. The higher the value of radiation per square meter, the 

more likely it is for that surface to be hot and consequently lead to high usage 

of energy for cooling the interior (Wankanapon & Mistrick, 2011). From the 

values in Table 1, it can be seen that March has the highest radiation exposure 

on the façade, with a minimum of 21.85 Kwh/m2 and a maximum of 218.5 

Kwh/m2. The month of July has the lowest radiation exposure on the façade, 

with a minimum of 16.2 Kwh/m2 and a maximum of 161.98 Kwh/m2.  

However, the minimum value is not of much concern but the maximum, which 

indicates how much radiation the building will be exposed to, as illustrated in 
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Plate 2 with colour graded representation before introducing shading devices. 

The method of selecting the maximum values as critical periods to determine 

the level of radiation exposure of the building envelope is consistent with the 

shading period selection criteria of Sargent, Niemasz, and Reinhart (2011).  

 

Transition  

 

A louver shading system is introduced to the building envelope through the 

simulation process to counter excessive heating of the building envelope. 

Static exterior shading devices such as louvers and overhangs have been used 

as means of solar radiation control to improve indoor environmental 

conditions (Sargent et al., 2011). It could be seen from Table 1 that March 

with the highest radiation exposure value for the year (218.5 Kwh/m2) was 

reduced to 87.4 Kwh/m2 after the introduction of the shading device system. 

According to E. S. Lee and Selkowitz (1994), the shades should close when 

the transmitted direct solar radiation is higher than 94.5 Kwh/m2.  Therefore, 

87.4 Kwh/m2 radiation on the building façade is not expected to affect the 

indoor environmental conditions of the building occupants adversely. 

 

On the other hand, the month of July with the lowest radiation exposure value 

for the year (161.98 Kwh/m2) was further reduced to 64.79 Kwh/m2 after 

introducing the shading device system. It could reduce drastically the energy 

demand for cooling induced by direct solar radiation. The shading system 

introduced mimics a wavelike pattern placed at differing angles on the 

building facade with equal spacing and repeated until a suitable range is 

obtained. In the case of this study, a spacing of 1200mm was chosen. 

Interestingly, the result obtained revealed that the amount of radiation 

exposure on the building façade reduced by 60% in all the months, as shown 

in Figure 7. This underscores the consequence of utilising shading devices to 

optimise the building's performance.  

 

 
 

Figure 7: Change in radiation on the building façade after the introduction of 

shading devices 
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LIMITATIONS OF THE STUDY 

This study explored the utilisation of parametric design tools in the process of 

building design to enhance its optimisation through manipulation of shading 

devices to reduce direct solar heat gains. This involves simulating 

environmental parameters by creating visual algorithmic relationships between 

necessary information to create visual feedback of the weather data to 

ascertain the radiation analysis and introduce shading devices as intervening 

variables in the study model. Results obtained revealed that introducing the 

louver shading system through the simulation process can counter excessive 

radiation of the building envelope. It was evident from the data that shows that 

the amount of radiation exposure on the building façade reduced by 60% in all 

the months after the introduction of the shading device system. This reduction 

in radiation on the building façade ultimately portends the enhancement of 

cooling for the building interior. Only solar radiation parameter was utilised 

 

CONCLUSION 

This study explored the utilisation of parametric design tools in the process of 

building design to enhance its optimisation through manipulation of shading 

devices to reduce direct solar heat gains. This involves simulating 

environmental parameters by creating visual algorithmic relationships between 

necessary information to create visual feedback of the weather data to 

ascertain the radiation analysis and introduce shading devices as intervening 

variables in the study model. Results obtained revealed that introducing the 

louver shading system through the simulation process can counter excessive 

radiation of the building envelope. It was evident from the data that shows that 

the amount of radiation exposure on the building façade reduced by 60% in all 

the months after the introduction of the shading device system. This reduction 

in radiation on the building façade ultimately portends the enhancement of 

cooling for the building interior. Only solar radiation parameter was utilised as 

the weather condition in predicting the building performance in this study; 

hence, future studies should extend the scope of the investigation to other 

conditions such as wind. The parametric design approach entails simultaneous 

design analysis, enabling designers to monitor changes during the design 

process, thereby enhancing performance in buildings and generating forms by 

integrating performance evaluation of particular design requirements.  

     

REFERENCES 

Acquaah, Y., Steele, J. B., Gokaraju, B., Tesiero, R., & Monty, G. H. (2020). 

Occupancy Detection for Smart HVAC Efficiency in Building Energy: A 

Deep Learning Neural Network Framework using Thermal Imagery. Paper 

presented at the 2020 IEEE Applied Imagery Pattern Recognition Workshop 

(AIPR).  

Aliero, M. S., Qureshi, K. N., Pasha, M. F., Ghani, I., & Yauri, R. A. (2021). 

Systematic Mapping Study on Energy Optimization Solutions in Smart 

Building Structure: Opportunities and Challenges. Wireless Personal 

Communications. doi:10.1007/s11277-021-08316-3 

Aliero, M. S., Qureshi, K. N., Pasha, M. F., & Jeon, G. (2021). Smart Home 

Energy Management Systems in Internet of Things networks for green cities 



EXPERIMENTATION OF PARAMETRICISM FOR DESIGN OPTIMISATION IN PREDICTING BUILDING PERFORMANCE                                    PJAEE, 19 (1) (2022)

              

 
 

 

96 
 

demands and services. Environmental Technology & Innovation, 22. 

doi:10.1016/j.eti.2021.101443 

Al-Masrani, S. M., Al-Obaidi, K. M., Zalin, N. A., & Isma, M. A. (2018). 

Design optimisation of solar shading systems for tropical office buildings: 

Challenges and future trends. Solar Energy, 170, 849-872.  

Alalouch, C. (2018). A pedagogical approach to integrate parametric thinking 

in early design studios. Archnet-IJAR: International Journal of Architectural 

Research, 12(2), 162.  

Augenbroe, G. (2001). Building simulation trends going into the new 

millennium. Paper presented at the Building Simulation. 

Eisenhower, B., O'Neill, Z., Narayanan, S., Fonoberov, V. A., & Mezić, I. 

(2012). A methodology for meta-model based optimisation in building energy 

models. Energy and Buildings, 47, 292-301.  

Elbeltagi, E., Wefki, H., Abdrabou, S., Dawood, M., & Ramzy, A. (2017). 

Visualised strategy for predicting buildings' energy consumption during early 

design stage using parametric analysis. Journal of Building Engineering, 13, 

127-136.  

Eltaweel, A., & Yuehong, S. (2017). Parametric design and daylighting: A 

literature review. Renewable and Sustainable Energy Reviews, 73, 1086-1103.  

Gerber, D. J. (2007). Parametric practices: Models for design exploration in 

architecture: Harvard University. 

Hernandez, C. R. B. (2006). Thinking parametric design: introducing 

parametric Gaudi. Design Studies, 27(3), 309-324.  

Hudson, R. (2010). Strategies for parametric design in architecture: an 

application of practice-led research. University of Bath,  

Jalali, Z., Noorzai, E., & Heidari, S. (2020). Design and optimisation of form 

and facade of an office building using the genetic algorithm. Science and 

Technology for the Built Environment, 26(2), 128-140.  

Lee, E. S., & Selkowitz, S. E. (1994). The design and evaluation of integrated 

envelope and lighting control strategies for commercial buildings.  

Lee, K. S., Han, K. J., & Lee, J. W. (2016). Feasibility study on parametric 

optimisation of daylighting in building shading design. Sustainability, 8(12), 

1220.  

Mahmoud, A. S., Hamdan Ahmad, M., Mohd Yatim, Y., & Aminu Dodo, Y. 

(2020). Key Performance Indicators (KPIs) to Promote Building Developers 

Safety Performance in the Construction Industry. Journal of Industrial 

Engineering and Management, 13(2). doi:10.3926/jiem.3099 

Munaaim, M. A. C., Al-Obaidi, K. M., Ismail, M. R., & Rahman, A. M. A. 

(2014). Empirical evaluation of the effect of heat gain from fiber-optic 

daylighting system on tropical building interiors. Sustainability, 6(12), 9231-

9243.  

Okafor C. I. , Ali, M. B., Modi, P. P. M., Duku, J. A. C. and Dodo, Y. 

A.(2020). Policy Approach To The Causes And Effects Of Internally 

Displaced Persons And Migration Crises In Juba. European Journal of 

Molecular & Clinical Medicine, Volume 07(Issue 03,). 

Østergård, T., Jensen, R. L., & Maagaard, S. E. (2016). Building simulations 

supporting decision making in early design–A review. Renewable and 

Sustainable Energy Reviews, 61, 187-201.  



EXPERIMENTATION OF PARAMETRICISM FOR DESIGN OPTIMISATION IN PREDICTING BUILDING PERFORMANCE                                    PJAEE, 19 (1) (2022)

              

 
 

 

97 
 

Oxman, R., & Gu, N. (2015). Theories and models of parametric design 

thinking.  

Reinhart, C. F., Mardaljevic, J., & Rogers, Z. (2006). Dynamic daylight 

performance metrics for sustainable building design. Leukos, 3(1), 7-31.  

Roudsari, M. S., Pak, M., & Smith, A. (2013). Ladybug: a parametric 

environmental plugin for Grasshopper to help designers create an 

environmentally-conscious design. Paper presented at the Proceedings of the 

13th international IBPSA conference held in Lyon, France Aug. 

Sargent, J. A., Niemasz, J., & Reinhart, C. F. (2011). Shaderade: combining 

Rhinoceros and Energyplus for the design of static exterior shading devices. 

Paper presented at the Proceedings of Building Simulation. 

Suyoto, W., Indraprastha, A., & Purbo, H. W. (2015). Parametric approach as 

a tool for decision-making in planning and design process. Case study: Office 

tower in Kebayoran Lama. Procedia-Social and Behavioral Sciences, 184, 

328-337.  

Syed Ahmed Iskandar Syed Ariffina, Y. A. D., Raja Nafidab, Norazila 

Kamarulzamanb. (2015). A Conceptual Framework For Digitalising Tangible 

Heritage In Malaysia. Jurnal Teknologi. 

Turrin, M., Von Buelow, P., & Stouffs, R. (2011). Design explorations of 

performance-driven geometry in architectural design using parametric 

modeling and genetic algorithms. Advanced Engineering Informatics, 25(4), 

656-675.  

Tzempelikos, A., & Shen, H. (2013). Comparative control strategies for roller 

shades concerning daylighting and energy performance. Building and 

Environment, 67, 179-192.  

Van Langen, P. H., & Brazier, F. M. (2006). Design space exploration 

revisited. Ai Edam, 20(2), 113-119.  

Wang, H., & Zhai, Z. J. (2016). Advances in building simulation and 

computational techniques: A review between 1987 and 2014. Energy and 

Buildings, 128, 319-335.  

Wankanapon, P., & Mistrick, R. G. (2011). Roller shades and automatic 

lighting control with solar radiation control strategies. International Journal of 

Building, Urban, Interior, and Landscape Technology; BUILT, 1, 37-46.  

Woodbury, R. (2010). Elements of parametric design.  

Zhang, L., Zhang, L., & Wang, Y. (2016). Shape optimisation of free-form 

buildings based on solar radiation gain and space efficiency using a multi-

objective genetic algorithm in the severe cold zones of China. Solar Energy, 

132, 38-50.  

Acquaah, Y., Steele, J. B., Gokaraju, B., Tesiero, R., & Monty, G. H. (2020). 

Occupancy Detection for Smart HVAC Efficiency in Building Energy: A Deep 

Learning Neural Network Framework using Thermal Imagery. Paper 

presented at the 2020 IEEE Applied Imagery Pattern Recognition Workshop 

(AIPR).  

Aliero, M. S., Qureshi, K. N., Pasha, M. F., Ghani, I., & Yauri, R. A. (2021). 

Systematic Mapping Study on Energy Optimization Solutions in Smart 

Building Structure: Opportunities and Challenges. Wireless Personal 

Communications. doi:10.1007/s11277-021-08316-3 

Aliero, M. S., Qureshi, K. N., Pasha, M. F., & Jeon, G. (2021). Smart Home 

Energy Management Systems in Internet of Things networks for green cities 



EXPERIMENTATION OF PARAMETRICISM FOR DESIGN OPTIMISATION IN PREDICTING BUILDING PERFORMANCE                                    PJAEE, 19 (1) (2022)

              

 
 

 

98 
 

demands and services. Environmental Technology & Innovation, 22. 

doi:10.1016/j.eti.2021.101443 

Mahmoud, A. S., Hamdan Ahmad, M., Mohd Yatim, Y., & Aminu Dodo, Y. 

(2020). Key Performance Indicators (KPIs) to Promote Building Developers 

Safety Performance in the Construction Industry. Journal of Industrial 

Engineering and Management, 13(2). doi:10.3926/jiem.3099 

Okafor Christian Izuchukwu , M. B. A., & Pitya Peter Marino Modi , J. A. C. 

D. Y. A. D. (2020). Policy Approach To The Causes And Effects Of Internally 

Displaced Persons And Migration Crises In Juba. European Journal of 

Molecular & Clinical Medicine, Volume 07(Issue 03,).  

Syed Ahmed Iskandar Syed Ariffina, Y. A. D., Raja Nafidab, Norazila 

Kamarulzamanb. (2015). A Conceptual Framework For Digitalising Tangible 

Heritage In Malaysia. Jurnal Teknologi.  

 


