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ABSTRACT 

We propose an unused strategy for estimation in direct models. The 'Wavelet Lasso' minimizes 

the remaining sum of squares subject to the entirety of the supreme esteem of the coefficients 

being less than consistent. Since of the nature of this limitation, it tends to create a few 

coefficients that are preciseness and consequently give interpretable models. 

 

This paper proposes a simple estimate for tuning parameters based on wavelet shrinkage of 

penalized method (Lasso) compared with the classic penalized method depending on the tail 

probability behavior of the response variables and using simulation experiments for (10% and 

50%) contamination and real data. The comparing results between the proposed method with 

a classic penalized method based on the statistical criterion (MAE and MSE). It was concluded 

that the wavelet shrinkage of penalized method gives the best results and a more accurate 

classical method for all simulations and real data based on (MAE and MSE) criteria. 

 

INTRODUCTION: 

Penalized regression methods for linear regression have been developed over 

the last few decades to overcome the flaws of ordinary least squares regression 

with regard to prediction accuracy (Van der Kooij., 2007). 

 

The ordinary least squares (OLS) estimates are obtained by minimizing the 

residual squared error. There are two reasons why the data analyst is often not 

satisfied with the OLS estimates. The first is prediction accuracy: the OLS 

estimates often have low bias but large variance; prediction accuracy can 

sometimes be improved by shrinking or setting to 0 some coefficients. By doing 

so we sacrifice a little bias to reduce the variance of the predicted values and 
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hence may improve the overall prediction accuracy. The second reason is 

interpretation. With a large number of predictors, we often would like to 

determine a smaller subset that exhibits the strongest effects (Tibshirani., 1996). 

Multiple regression is often used to estimate a model for predicting future 

responses or to investigate the relationship between the response variable and 

the predictor variables. For the first goal, the prediction accuracy of the model 

is important, for the second goal the complexity of the model is of more interest. 

Ordinary least squares (OLS) regression is known for often not performing well 

with respect to both prediction accuracy and model complexity. Several 

regularized regression methods were developed the last few decades to 

overcome these flaws of OLS regression, starting with Ridge regression (Hoerl 

and Kennard 1970a,b), followed by Bridge regression (Frank and Friedman 

1993), and the Lasso (Tibshirani1996). 

 

However, the effectiveness of this system is dependent on selecting the tuning 

parameter that is included in the penalty functions correctly. There are many 

other approaches for selecting the tuning parameter. They are determined by 

using a suitable criterion. The desirable selector can be obtained by minimizing 

this criterion in relation to the tuning parameter. The most well-known current 

methods are data-driven approaches such as cross-validation (CV) and 

generalized cross-validation (GCV) (Fan and Li., 2001). 

 

(Donoho and Johnstone., 1995) devised the wavelet threshold approach, which 

reconstructs signals using thresholding coefficients. The denoising effect of the 

wavelet threshold approach is determined by the threshold. If the specified 

threshold is too high, some useful information is filtered out; if the threshold is 

too low, some noise is preserved. Many academics researched threshold 

determination approaches in to try to tackle this challenge. (Donoho and 

Johnstone., 1993) proposed a universal threshold by evaluating a normal 

Gaussian noise model. The flaw in these systems is that a universal threshold is 

frequently imposed. The issue in these systems is that the universal threshold is 

frequently set too high, which might result in excess of relevant information.  

 

All of these methods are based on a specific coefficient distribution, although 

the distribution may not be applicable to a specific signal. (Donoho and 

Johnstone.,1994) suggested a new minimax criterion-based threshold 

technique. However, this method requires prior knowledge about the original 

signal, which is difficult to obtain in practice. Based on the concept of parameter 

estimates, Stein's unbiased risk estimate (SURE) criterion and generalized cross 

validation (GCV) criterion (Jansen and Bultheel.,1999) were presented. SURE 

criterion is an unbiased estimate of the minimized mean square error (MSE) 

criterion, and GCV criterion is a biased estimate of the minimized MSE 

criterion. (Cai and Zhou.,2009 ) suggested an SURE-based data-driven 

threshold determination approach. (Autin and von Sachs., 2012) proposed a 

novel approach by integrating various threshold rules. 

 

In this study, wavelet shrinkage for lasso is proposed for effectively handling of 

these issues. The effectiveness of the proposed methods is examined through 

simulation studies and applications in the real data.  
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PENALIZED METHODS: 

Penal methods have appeared in recent years and have gained wide popularity 

among statisticians, as these methods are an important key to performing the 

selection of variables and estimating parameters simultaneously, so many 

penalty methods have been proposed through which a penalty constraint is 

added to the regression models. (Tutz, G. and Ulbricht, J., 2009)The goal of 

adding the penalty restriction is to control the complexity of the model and 

provide a criterion for the selection of variables, by introducing some 

restrictions on the transactions that impose on some transactions that their value 

is equal to zero (Helwig, N.E., 2017). 

 

The penalty constraint quantity works to balance the variance and bias in the 

chosen model. When the penalty amount is small, a larger number of 

explanatory variables are selected with a small bias, but the variance will be 

Large, on the contrary, a large penalty amount causes few explanatory variables 

to be selected with a large bias but the variance will be lower. Therefore, a good 

choice of penalty amount leads to improving the prediction accuracy and ease 

of understanding and interpretation of the model (Li, Z. and Sillanpää., 2012) 

 

In general, it is known as Penalized Linear Regression (PLR.). 

As follows: 

 

       PLR(β; λ) = (Y − Xβ)T(Y − Xβ) + λ ∑ Pλ(|βj|)
p
j=1                 (1)   

 

where the amount  Pλ(|βj|) represents the penalty term, which is a function of 

coefficients, and (λ) represents the tuning parameter, since (λ ≥ 0),   and that 

the penalty limit depends entirely on The value of (λ) as it controls the amount 

of shrinkage of parameter values. When the value is (λ = 0)  then we get the 

estimations of the Ordinary Least Squares method (OLS). Conversely, as the 

value of (λ)  increases, the number of variables excluded from the model will 

increase (Wood., 2006). 

 

In partial linear regression, estimates of the model parameters are found using 

these equation: 

 

βPLR
^ = argmin(Y − Xβ)T(Y − Xβ) + λ ∑ Pλ(|βj|)

p
j=1           (2) 

 

The two researchers (Jianging Fan and Li., 2001) suggested that a good penalty 

term should produce an estimator that has three properties, first, (unbiasedness) 

when the variable is unbiased for large real parameters. Second, (sparsity) 

makes small estimators exactly zero. Finally, the estimated continuity is 

(continuous) in the data to avoid instability in the model prediction. 

 

There are many penalized methods that have been proposed and their 

characteristics studied, including Ridge, Least Absolute Shrinkage and 

Selection Operator (LASSO), Elastic-Net, Bridge and other methods. 
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Lasso Regression (Least Absolute Shrinkage and Selection Operator): 

  

The loss functions for the Lasso can be viewed as constrained versions of the 

ordinary least squares (OLS) regression loss function. In Lasso Regression 

constrains the sum of the absolute values of the coefficients as follows (Van der 

Kooij., 2007):     

 

Llasso(β1, … , βP) = ‖y − ∑ βjXj
P
j=1 ‖

2
, subject to ∑ |βj| ≤ t1

P
j=1     (3)      

        

With N the number of observations, P the number of predictor variables, 

βj, (j = 1, . . ., P), the regression coefficients, and t1 the Lasso tuning parameter, 

and where ‖. ‖2 denotes the squared Euclidean norm. 

 

This constrains loss functions can also be written as penalized loss functions: 

Llasso(β1, … , βP) = ‖y − ∑ βjXj
P
j=1 ‖

2
+ λ1 ∑ sign(βj)βj

P
j=1   (4)      the with  λ1 

the Lasso penalty, penalizing the sum of the absolute values of the regression 

coefficients. In matrix notation, the penalized loss functions are written as: 

 

Llasso(β1, … , βP) = ‖y − Xβ‖2 + λ1wTβ                       (5) 

 

Where the elements wj of (w) are either +1 or −1, depending on the sign of the 

corresponding regression coefficient βj.  

 

Minimization of the constrained loss function is more complicated. The 

regression coefficients are estimated as 

 

βlasso(β1, … , βP) = (XTX)−1(XTy +
λ1

2
w)                     (6) 

 

Wavelets Shrinkage: 

 

Wavelets are functions that satisfy certain mathematical requirements and are 

used in representing data or other functions. This idea is not new. 

Approximation using superposition of functions has existed since the early 

1800’s, when Joseph Fourier discovered that he could superpose sines and 

cosines to represent other functions. However, in wavelet analysis, the scale that 

we use to look at data plays a special role. Wavelet algorithms process data at 

different scales or resolutions. If we look at a signal with a large “window,” we 

would notice gross features. Similarly, if we look at a signal with a small 

“window,” we would notice small features (Antoniadis A.,2007) The result in 

wavelet analysis is to see both the forest and the trees, so to speak. This makes 

wavelets interesting and useful. For many decades, scientists have wanted more 

appropriate functions than the sines and cosines which comprise the bases of 

Fourier analysis, to approximate choppy signals.  By their definition, these 

functions are non-local (and stretch out to infinity) (Donoho and Johnostone., 

1995). They therefore do a very poor job in approximating sharp spikes. But 

with wavelet analysis, we can use approximating functions that are contained 

neatly in finite domains. Wavelets are well-suited for approximating data with 

sharp discontinuities. The wavelet analysis procedure is to adopt a wavelet 
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prototype function, called an analyzing wavelet or mother wavelet. Temporal 

analysis is performed with a contracted, high-frequency version of the prototype 

wavelet, while frequency analysis is performed with a dilated, low-frequency 

version of the same wavelet. Because the original signal or function can be 

represented in terms of a wavelet expansion (using coefficients in a linear 

combination of the wavelet functions), data operations can be performed using 

just the corresponding wavelet coefficients. And if you further choose the best 

wavelets adapted to your data, or truncate the coefficients below a threshold, 

your data is sparsely represented. This sparse coding makes wavelets an 

excellent tool in the field of data compression. Other applied fields that are 

making use of wavelets include astronomy, acoustics, nuclear engineering, sub-

band coding, signal and image processing, neurophysiology, music, magnetic 

resonance imaging, speech discrimination, optics, fractals, turbulence, 

earthquake-prediction, radar, human vision, and pure mathematics applications 

such as solving partial differential equations.  

 

Daubechies Wavelets: 

  

Ingrid Daubechies invented what are called compactly supported orthonormal 

wavelets , one of the brightest stars in the world of wavelet research, thus 

making discrete wavelet analysis practicable. The Daubechies family wavelets 

are written as dbN, where N is the order, db is the family name of the wavelet 

(Dhamija., 2013). 

 

Advantages: 

 

 a) The Daubechies wavelets are orthogonal in nature which is energy 

preserving.  

b) compactly-supported, orthogonal wavelets. 

 

Fejer-Korovkin: 

 

Fejer-Korovkin It’s a wavelet filter more symmetric than the Daubechies filters, 

but less soft. This filter has a wide application on the approximation theory, and 

a frequency response adequate as the support increases (Varanis,  and Pederiva., 

2017). 

 

Thresholding:  

  

Thresholding is the simplest method of non-linear wavelet denoising, in which 

sub dividing the wavelet coefficient in to two sets, one of which represents 

signal while the other represents noise (Hamad.A.S., 2010) . 

  

There are different rules to apply the thresholds of the wavelet coefficients, and 

several different methods for choosing a threshold value exist such as: 

 

Universal Threshold: 

  

(Donoho and Johnstone.,1994) proposed universal threshold, which is given by 
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ηU = σ̃(MAD)√2logN                   (7) 

  

Where N is the data length series, and σ̃(MAD) is the estimator of standard 

deviation of details coefficients, which is estimated as: 

 

σ̃(MAD) =
MAD

0.6745
                (8) 

 

MAD is the median absolute deviation of the wavelet coefficients at the finest 

scale, defined to be. 

 

MAD = median [|W1,0|, |W1,1|, … , |W
1,N

2
−1

|]      (9) 

 

So that W1,t represents the element of the W1 while the constant is the median 

of the standard normal distribution. 

 

 "For a sequence of independently and identically distribution (IID) N(0, σ2) 

random variables, as N → ∞, so the universal threshold shrank all noise 

coefficients to zero with high probability, but part of the real underlying might 

also be lost. Thus, the universal threshold tends to over smoothing. 

 

P[max(|Wn| ≤ ηU)] → 1               (10) 

 

 Note, that the combination of the universal threshold and soft thresholding is 

suggested by Donoho and Johnstone under the name Visu Shrink. 

  

An important feature of visu shrink is that it "guarantees" a noise- free 

reconstruction although by doing so it usually under fits the data by setting the 

threshold too height. 

 

SURE Threshold  

  

The sure threshold proposed by (Donoho and Johonstone ,1995), which based 

upon the minimization of stein's unbiased risk estimator. 

  

In sure threshold specifies a threshold value of ηj for each level j of the wavelet 

coefficients, then for the soft threshold estimator we have. 

 

SURE(η, W) = N − 2 ≠ {j: |Wj| ≤ η} − ∑ min(|Wj|, η)

d

j=0

      (11) 

 

Where {Wj: j = 1,2, … , d} be a wavelet coefficients in the jth level, and  

  

Then, select ηS  that minimizes SURE (η, W). 

 

ηS = arg min SURE (η, W) 

 



COMPARISON BETWEEN PROPOSED METHOD FOR WAVELET LASSO AND CLASSICAL PENALIZED METHOD (SIMULATION STUDY)   PJAEE, 19 (3) (2022) 

   

1701 
 

Donoho and Johonstone (1995) recommended that the SURE threshold is in fact 

hybrid thresholding approach, utilissing both the universal and SURE threshold. 

The set of coefficients is judged to be sparsely represented, then the universal 

threshold is used, otherwise the SURE threshold is used to select a threshold 

level. 

 

The level j is considered to be sparse if  

 

WSS(η) ≤ 1 +
(log Nj)

3
2

√Nj

                                    (12) 

  

Where Nj is the number of wavelet coefficients in the level j, and WSS(η)  is the 

sum of square of wavelet coefficients. 

 

WSS(η) = ∑ Wj,t
2                                      (13) 

 

Minimax Threshold  

  

The optimal minimax threshold proposed by Donoho (1995) as an improvement 

to the universal threshold, Minimax is based on an estimator f̃ that attains to the 

minimax risk. 

 

R̃(F) = inf̃fsupf∈R̃(F)R(f̃, f)                             (14) 

 

Where  

 

R(f̃, f) =
1

N
∑ EN

i=1 [f̃ − f]2                              (15) 

  

Where f = f(xi) andf̃ = f̃(xi), denote the vectors of true and estimated sample 

values.  

  

The threshold minimax estimator is different from universal counter parts, in 

which the minimax threshold is concentration on reducing the over all mean 

square error but the estimates are not over-smoothing. 

  

As already mentioned, when the optimal minimax threshold is incorporated into 

the soft thresholding rules, it is known the risk shrink.  

 

Proposed Method: 

  

The proposed method is use of wavelet shrinkage for estimate tuning parameter 

in Penalized linear regression, which depends on the small wave filter after 
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treating it with a threshold rule, and then using the outputs to find (DWT) and 

get denoise data, and then use this data modified for Wavelet shrinkage for 

Penalized methods (Wavelet Lasso) in estimating a multiple linear regression 

model when heavy-tailed distributions and de-noising values are present 

parameters and calculating (MSE and MAE) comparing it with the classical 

Penalized methods. 

 

By shrinking the detail coefficients, the inverse DWT is applied to the shrunken 

set of coefficients. Wavelet shrinkage for each level, we will have a threshold. 

The Fixed form threshold (i.e.; Universal threshold) technique is considered 

from equation (7) and put in the place of the tuning parameter from equations 

(6),  then for SURE and Minimax equations (13 and 14) put in the place of the 

tuning parameter from equations (6) which is as follows: 

 

Tuning parameter estimating by: 

 

 Universal threshold    U =      

  

βlasso(β1, … , βP) = (XTX)−1(XTy +
ηU

2
w)            (16) 

 

      SURE threshold   WSS(η) = λ    

 

βlasso(β1, … , βP) = (XTX)−1(XTy +
WSS(η)

2
 w)       (17) 

 

Minimax threshold   R̃(F) = λ 

 

βlasso(β1, … , βP) = (XTX)−1(XTy +
R̃(F)

2
w)               (18) 

 

Depending on the wavelet matrix such as (db1) and (fk4), we get the values of 

(observations of the processed response variable), which will be used with the 

independent variable in estimating the parameters of the multiple linear 

regression model. 

 

Finally, as shown in picture (2), the methodologies utilized to estimate and 

compare Penalized linear regression performance in Wavelet shrinkage for 

penalized methods (wavelet Lasso) will be described: 
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Diagram (1): Proposed Method (Wavelet shrinkage for penalized methods) 

 

Application Part: 

 

This Part included a practical comparison of the methodologies employed in the 

estimation process represented by Wavelet shrinkage for penalized methods and 

classical penalized methods. The relative efficiency, which is represented by the 

mean square of error and mean absolute error, was determined to present with 

a review of the most essential strategy of regularization for coefficients 

regression. 

 

Tests of provide penalized conditions 
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Simulation Study: 

 

To implement the simulation experiments, different levels of the following 

factors were used sample sizes n, Where two sample sizes were used, namely, 

the simulation experiment included many cases, as two sizes of samples were 

used, which are (100 and 200) when the number of parameters (P) is equal 

to(11), and another two sample sizes are (100 and 300) when the number of 

parameters (P) is equal to(51), and we contaminate of (ei) vector without 

modifying explanatory variables such that this contaminated values can cause 

outliers. Here original (ei) values are taken from a standard normal distribution 

with (zero mean and standard deviation equal to 1and 3) and generated (10%, 

50%, and 100%) values from the Laplace distribution with ( location =2, 

scale=1). These values produce outliers and contaminate the data by 

(Hawkins.,1980) using this formula f(x) = (1 − p) ∗ f1(x) + p ∗ f2(x). The 

explanatory variables are independent of a normal distribution (with a mean 

equal to zero and a standard deviation equal to one). When the number of 

parameters (P) is equal to (3 -5 0 0 -0.5 0 0 0.5 5 0 0) where q=5 are numbers 

of non- zero coefficients, and the second case (P) equal to (2 4 0 -6 0 3 0 1 0 0.5 

0 -8 5 0 3 -0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -

5) where q=11 are numbers of non-zero coefficients. For the frequency of 

(1000) iterations of the assumed regression model and each of the cases shown 

in tables (1, 2, 3, 4) a comparison was made between the methods used in the 

estimation process represented by a method Wavelet shrinkage for Penalized 

methods (Wavelet Lasso) with Classic Penalized methods (Lasso) and 

parameters can now be defined for the default model. The comparison was made 

to calculate the relative efficiency, which represents the mean square of error 

(MSE) and mean absolute error (MAE). 

 

Table 1: The average (MAE and MSE) values for classic and proposed 

methods.  

               Where (σ = 1) and (P=11) 

 

W
av

el
et

 

Criteria n=100 

Proposed Method 

10% Contaminate 50%Contaminate 

Universal SURE Minimax Universal SURE Minimax 

db1 MAE 0.8844 0.9026 0.9010 1.2075 1.2283 1.2271 

MSE 1.4827 1.5475 1.5417 2.5384 2.6410 2.6353 

q 3.9980 3.9980 

FK4 MAE 0.8842 0.9027 0.9009 1.2074 1.2286 1.2275 

MSE 1.4812 1.5479 1.5417 2.5380 2.6427 2.6372 

q 3.9980 3.9980 

Classic Lasso   

MAE 3.1985 4.0002 

MSE 12.9643 20.5071 
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q 5 5 

n=200 

db1 MAE 0.9049 0.9085 0.9083 1.2402 1.2449 1.2448 

MSE 1.4670 1.4829 1.4821 2.5063 2.5321 2.5317 

q 5 5  

FK4 MAE 0.9049 0.9085 0.9082 1.2401 1.2448 1.2447 

MSE 1.4664 1.4828 1.4819 2.5061 2.5322 2.5315 

q 3.9990 3.9990 

    Classic Lasso 

MAE 3.2036 4.0046 

MSE 12.326 19.473 

q 5 5 

 

Table 2: The average (MAE and MSE) values for classic and proposed 

methods.  

              

Where (σ = 3) and (P=11) 

 

W
av

el
et

 

Criteria n=100 

Proposed Method 

10% Contaminate 50% Contaminate 

Universal SURE Minimax Universal SURE Minimax 

db1 MAE 2.3138 2.3222 2.3211 2.4425 2.4538 2.4530 

MSE 9.4824 9.5506 9.5420 10.5497 10.6437 10.6378 

q 4 4 

FK4 MAE 2.3137 2.3221 2.3210 2.4424 2.4537 2.4528 

MSE 9.4806 9.5490 9.5410 10.5472 10.6463 10.6367 

q 4 4 

         Classic 

Lasso 

  

MAE 3.5954 4.27 

MSE 21.0316 28.5702 

q 5 5 

n=200 

db1 MAE 2.3841 2.3859 2.3858 2.5135 2.5164 2.5163 

MSE 9.4718 9.4875 9.4866 10.5075 10.5334 10.5329 

q 3.9920 3.9920 

FK4 MAE 2.3841 2.3859 2.3858 2.5135 2.5164 2.5163 
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MSE 9.4713 9.4874 9.4863 10.5373 10.5333 10.5324 

q 3.9920 3.9920 

    Classic Lasso 

MAE 3.6372 4.3053 

MSE 20.4142 27.5666 

q 5 5 

  

Table 3: The average (MAE and MSE) values for classic and proposed methods      

              Where (σ = 1) and (P=51) 

 

Wavelet Criteria n=100 

Proposed Method 

10% Contaminate 50% Contaminate 

Universal SURE Minim

ax 

Univers

al 

SUR

E 

Minima

x 

db1 MAE 0.7095 1.1532 1.0898 0.9244 1.357

1 

1.3027 

MSE 1.6768 4.5550 4.0486 2.7375 6.049

7 

5.5569 

q 9.9980 9.9980 

FK4 MAE 0.7101 1.1677 1.0986 0.9250 1.371

1 

1.3127 

MSE 1.6800 4.6611 4.1030 2.7419 6.158

6 

5.6241 

q 9.9980 9.9980 

         Classic Lasso   

MAE 2.2049 2.9986 

MSE 11.4156 20.9249 

q 11 11 

n=300 

db1 MAE 0.8542 0.8659 0.8628 1.1582 1.174

5 

1.1721 

MSE 1.4668 1.5175 1.5056 2.5087 2.579

4 

2.5687 

q 10 10 

FK4 MAE 0.8542 0.8658 0.8626 1.1582 1.174

5 

1.1721 

MSE 1.4668 1.5169 1.5050 2.5087 2.579

1 

2.5686 

q 10 10 

    Classic Lasso 

MAE 2.2086 3.0039 

MSE 7.2934 2.5087 
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q 11 11 

 

Table 4: The average (MAE and MSE) values for classic and proposed methods   

               

Where (σ = 3) and (P=51) 

 

Wavele

t 

Criteria n=100 

Proposed Method 

10% Contaminate 50% Contaminate 

Universa

l 

SURE Minima

x 

Universa

l 

SURE Minimax 

db1 MAE 1.7318 1.9856 1.9427 1.8249 2.1014 2.0608 

MSE 9.6642 12.7377 12.181 10.7327 14.269

4 

13.7102 

q 9.9890 9.9890 

FK4 MAE 1.7321 1.9864 1.9442 1.8252 2.1053 2.0648 

MSE 9.6667 12.7491 12.1957 10.7371 14.322

2 

13.7538 

q 9.9890 9.9890 

         Classic Lasso   

MAE 2.564 3.2104 

MSE 19.7432 29.2596 

q 11 11 

n=300 

db1 MAE 2.2347 2.2409 2.2395 2.3568 2.3650 2.3638 

MSE 9.4746 9.5264 9.5144 10.5236 10.596 10.5851 

q 9.9990 9.9990 

FK4 MAE 2.2347 2.2411 2.2394 2.3568 2.3651 2.3637 

MSE 9.4746 9.5275 9.5137 10.5236 10.596

3 

10.5843 

q 9.9990 9.9990 

    Classic Lasso 

MAE 2.8884 3.4688 

MSE 15.3297 21.3667 

q 11 11 

         

Results Interpretation from Tables (1,2,3, and 4): 

 

A- Show the cases (10% and 50%) that contaminate the proposed method for 

wavelet types (db1 and Fk4) the average (MAE) and (MSE) is less than the 

classic method. 
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B- Noted the proposed method of threshold method (Universal) for the average 

of (MAE) and (MSE) less than from the case of the proposed method for 

threshold methods (SURE and Minimax). 

C- Show the proposed method for number Non-Zero coefficients is better than 

Classic method according to the criteria of (q). 

 

D- They found the result increased the rate of contaminate and then increased 

the values of (MAE and MSE) for all cases. 

 

E- In most cases for sample sizes, the wavelet type (FK4) is shown to be better 

than the wavelet type (db1) according to the average (MAE and MSE) except 

in the case of (σ = 1and 3) and (P=51) the wavelet type (db1) is better than the 

wavelet type (FK4) when sample size equal (100). 

 

Application for Real Data: 

  

To take advantage of the proposed penalized methods data related to studies 

was used by The prostate cancer data come from a study by Stamey (1989) that 

examined the correlation between the level of prostate specific antigen and a 

number of clinical measures in men who were about to receive a radical 

prostatectomy. The study had a total of 64 observations of male patients aged 

from 41 to 79 years. The response variable is lpsa - the logarithm of prostate-

specific antigen. The covariates are as follows: 

 

 1. lcavol - log (cancer volume) 

 2. lweight - log (prostate weight) 

 3. age  

4. lbph - log (benign prostatic hyperplasia amount) 

5. svi - seminal vesicle invasion  

6. lcp - log (capsular pEnetration)  

7. gleason - Gleason score  

8. pgg45 - percentage Gleason scores 4 or 5 As Let us fit linear model relating 

the log of PSA (lpsa) to the remaining eight variables plus a constant column, 

that is, 

 

lbph = β0 + β1lcavol + ⋯ + β8pgg45 + ϵi 

 

Table 5: Estimated coefficients and (MAE and MSE) values for classic and 

proposed methods of threshold method (Universal) for prostate cancer.  

 

Term Proposed Method  (Lasso) Classic 

db1 FK4 

Intercept -0.99 -0.76 1.07 

lcavol 0.24 0.24 0.34 

lweight 0.57 0.54 0.21 

age -0.01 -0.01 -0.13 

lbph 0.17 0.17 0.21 

svi -0.1 -0.1 -0.06 
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lcp 0.00 0.00 -0.05 

gleason 0.01 0.01 0.17 

pgg45 0.00 0.00 0.01 

MAE 0.4039 0.4037 0.7810 

MSE 0.3243 0.3238 0.9742 

 

Table 6: Estimated coefficients and (MAE and MSE) values for classic and 

proposed methods of threshold method (SURE) for prostate cancer. 

 

Term Proposed Method  (Lasso) Classic 

db1 FK4 

Intercept -1.01 -1.01 1.07 

lcavol 0.4 0.4 0.34 

lweight 0.07 0.07 0.21 

age -0.02 -0.02 -0.13 

lbph 0.17 0.17 0.21 

svi -0.03 -0.03 -0.06 

lcp -0.09 -0.09 -0.05 

gleason 0.03 0.03 0.17 

pgg45 0.00 0.00 0.01 

MAE 0.4040 0.4040 0.7810 

MSE 0.3246 0.3246 0.9742 

 

Table 7: Estimated coefficients and (MAE and MSE) values for classic and 

proposed methods of threshold method (Minimax) for prostate cancer. 

 

Term Proposed Method  (Lasso) Classic 

db1 FK4 

Intercept -1.01 -1.01 1.07 

lcavol 0.4 0.4 0.34 

lweight 0.57 0.57 0.21 

age -0.02 -0.02 -0.13 

lbph 0.17 0.17 0.21 

svi -0.01 -0.01 -0.06 

lcp -0.09 -0.09 -0.05 

gleason  0.00  0.00 0.17 

pgg45  0.00  0.00 0.01 

MAE 0.4040 0.4040 0.7810 

MSE 0.3246 0.3246 0.9742 
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From Tables (5, 6, and 7) where ( k=9) for sample sizes (64) we note the 

following:  

A- Show the proposed method for wavelet types (db1 and Fk4) the average 

means absolute error (MAE) and mean square error (MSE) is less than the 

classic method. 

 

B- Shows the proposed method of threshold method (Universal) for wavelet 

type (Fk4) the average of mean absolute error (MAE) and mean square error 

(MSE) less than from threshold methods (SURE and Minimax).  

 

C- Shows the proposed method of threshold method (Universal and Minimax) 

for wavelet type (db1 and Fk4) they were selected (6) variables but the classic 

method selected all variable, it’s meant proposed method more efficiency than 

classic method. 

 

CONCLUSION: 

First: Through Simulation study: 

 

1- In the all cases (10% and 50%) contaminates where (σ =1 and 3) and 

(P=11) for sample sizes (100 and 200) and (P=51) sample sizes (100 and 300) 

the proposed method for wavelet types (db1 and Fk4) is better than the classic 

method according to the criterion of (MAE), (MSE) and (q). 

 

2- In most of the case (10% and 50%) contaminate shows the proposed 

method of threshold method (Universal) for wavelet type (Fk4) according to the 

criterion of (MAE) and (MSE) less than from (SURE and Minimax) of wavelet 

type (db1). 

 

3- In most cases for all sample sizes, the wavelet type (FK4) is shown to 

be better than the wavelet type (db1) according to the average (MAE and MSE). 

Second: Through Real Data: 

 

 The proposed method better than the classic method according to the 

criterion for (MAE and MSE) and variables selection.  
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