
EXPLORING OBJECT-RELATIONAL MAPPING (ORM) SYSTEMS AND HOW TO EFFECTIVELY PROGRAM A DATA ACCESS MODEL PJAEE, 17 (3) (2020)

615

EXPLORING OBJECT-RELATIONAL MAPPING (ORM) SYSTEMS AND

HOW TO EFFECTIVELY PROGRAM A DATA ACCESS MODEL

Mikhail Gorodnichev1, Marina Moseva2, Ksenia Poly3, Khizar Dzhabrailov 4, Rinat

Gematudinov 5

1,2,3,4,5 Moscow Technical University of Communications and Informatics, Moscow,

Russia

1 m.g.gorodnichev@mtuci.ru

Mikhail Gorodnichev, Marina Moseva, Ksenia Poly, Khizar Dzhabrailov, Rinat

Gematudinov Exploring Object-Relational Mapping (Orm) Systems And How To

Effectively Program A Data Access Model-- Palarch’s Journal Of Archaeology Of

Egypt/Egyptogy 17(3), 615-627. ISSN 1567-214x

Keywords: Software Development, Relational Databases, Orm System, Opti-

Mization Of Program Code, Object-Oriented Programming.

ABSTRACT

The most common problem when using ORM libraries is a decrease in application

performance compared to access to the database by executing manually written SQL

queries. Several studies by Russian and foreign authors indicate a significant drop in

speed when working with databases through ORM, sometimes by 5 or more times.

Since existing studies show a significant variation in the results, and there are no

studies conducted using the latest version of Entity Framework 6. This study is

dedicated to solving the problem of the joint use of two basic technologies for

designing information systems - object-oriented programming and relational database

management systems. The paper discusses two ways of interacting with an RDBMS -

through ORM in the form of its specific implementation of Entity Framework 6.2, or

through SQL queries written without using ORM - and assesses the effect of an

additional layer of abstraction in the form of ORM on the speed of interaction with the

database, and also considers ORM performance optimization methods. The paper

presents the results of the optimization and final testing of the use of the ORM system,

draws conclusions about the effectiveness of using such systems in the development of

software applications.

INTRODUCTION

The main technology for storing and processing data today are relational

DBMSs - they have proven their effectiveness and safety. However, the

mailto:m.g.gorodnichev@mtuci.ru

EXPLORING OBJECT-RELATIONAL MAPPING (ORM) SYSTEMS AND HOW TO EFFECTIVELY PROGRAM A DATA ACCESS MODEL PJAEE, 17 (3) (2020)

design of software applications primarily uses the object-oriented

approach (OOP). Both approaches are widely used in modern

information systems, and due to their popularity, they are of- ten used

together to create complex software systems [1]. Since OOP and

relational DBMSs are based on completely different principles,

fundamental differences are inherent in them, and their joint use is

fraught with several problems. In the early 1990s, these differences were

called the "semantic gap".

This discrepancy between the two most popular paradigms of modern

computer science is due to several reasons. The fact is that OOP is based

on proven principles

of software development. In fact, objects (instances of classes) refer to each

other and therefore form a hierarchy (graph in the mathematical sense).

Relational schemes, by contrast, are tabular and based on relational

algebra, which defines related heterogeneous tuples (grouping data fields

in a row with different types for each field). In addition, the

fundamental principles of OOP are encapsulation, abstraction,

inheritance, and polymorphism, which have not been developed in the

relational database model. Thus, OOP uses concepts that are poorly

combined with the architecture of relational DBMSs, which are mainly

presented in the form of systems that execute queries in SQL. These

fundamental differences are a key issue in this paper.

To solve the above problems, the use of object-relational mapping

technology (abbr. ORM), which is the object of this study, is called

upon. Currently, ORM is a common tool for developing complex systems

that allows you to combine an object- oriented model of data

representation with a relational one, namely, to connect the RDBMS

with the concepts of OOJP, creating the so-called virtual object database.

The subject of the study is one of the most popular ORM libraries called

Entity Framework, originally developed by Microsoft, but since version

6.0, it is an open source library.

Since the most frequent problem when using ORM libraries is a decrease

in application performance (as compared to accessing the database by

executing SQL queries written by hand), the existing studies of this

problem show a significant spread in the results (although everyone

comes to the same conclusion that ORM to one degree or another reduces

the speed of working with the database).

The purpose of this work is to demonstrate in practice the difference

between the two ways of working with RDBMSs - through ORM in the

form of its specific implementation of Entity Framework 6.2, or through

SQL queries written without using ORM - and to evaluate the effect of

an additional abstraction layer in the form of ORM on the speed of

interaction with DB, and also consider methods for optimizing ORM

performance.

EXPLORING OBJECT-RELATIONAL MAPPING (ORM) SYSTEMS AND HOW TO EFFECTIVELY PROGRAM A DATA ACCESS MODEL PJAEE, 17 (3) (2020)

617

The objectives of this study:

1. To study the phenomenon of the semantic gap between relational

DBMS models and the object-oriented paradigm, considering the

relational DBMS and the reasons for their popularity, the principles of

OOP, the causes and problems of the semantic gap and alternative ways to

solve them.

2. To propose a solution to the problem of semantic gap through the

technology of object-relational mapping (ORM), to describe the principles

of this technology.

3. Consider the ways to create a data access model (EDM) in the

Entity Framework, as well as the operation scheme and features of this

library.

4. Design and develop test applications that interact with RDBMSs

with or without ORM in order to assess the impact of using ORM on

application performance.

5. Evaluate the possibility of optimizing performance when using the

Entity Frame- work 6.2 ORM library.

 METHODS

Reasons for the semantic gap between OOP and RDBMS

The semantic gap is a set of conceptual and technical difficulties that are

often encountered when a relational DBMS (RDBMS) is served by an

applications (or several applications) written in an object-oriented

language or programming style, because the definitions of objects or

classes must be mapped to database tables defined by a relational

schema. As previously described in [2], the semantic gap is observed in the

following aspects:

1. Basic principles of OOP. OOP entities are objects belonging to

different classes. Classes possess inheritance properties, forming a

hierarchy, which is the natural paradigm of OOP, and polymorphism,

when the behavior of a descendant object can be changed when

inheriting from a parent class. Also, when designing a class hierarchy,

abstraction is used to simplify the structure of each class and to differentiate

their area of responsibility and encapsulation to protect data from

possible changes from outside the class. In contrast to the OOP principles

described above, in RDBMS only two-dimensional tables are used, where

the rows are records and the columns are fields that are the same for all

table records, but the most important OOP principles described above are

not supported.

Compliance with the data scheme. Objects are not required to follow the

“parent schema,” while rows in a relational table must conform to a single

schema — each row can belong to one and only one entity (table).

Normalization and associative relations. In RDBMSs, normalization

EXPLORING OBJECT-RELATIONAL MAPPING (ORM) SYSTEMS AND HOW TO EFFECTIVELY PROGRAM A DATA ACCESS MODEL PJAEE, 17 (3) (2020)

principles are applied (which are usually ignored in OOP) - after the

database is reduced to the first normal form to avoid data duplication, they

are divided into many different tables connected by primary and secondary

keys, while in OOP class fields may contain references to objects of

another class and there is no need to use keys to establish communication

between objects of different classes.

The methods for accessing linked data through OOP and RDBMS are

fundamentally different, since in OOP, transitions from a parent to

descendant objects are implemented sequentially through links, and

objects are initialized as necessary, but such an algorithm is inefficient for

reading information from an RDBMS, since the number of queries to the

database should be minimized, and the necessary data located in different

tables must be loaded at the same time by using complex SQL queries.

Access rules and the relationship between entities (fields) and actions

(methods).

Declarative approach versus imperative. Semantic differences are

especially evi- dent in the aspects of data manipulation.

Use of various data types.

Identity of objects (records). Objects (other than immutable) are usually

considered unique; two objects that are in the same state at a given time

are not considered identical. On the other hand, for a relational model, it is

common practice to create globally unique keys as identifiers (although

sometimes this is considered bad

practice for those entries in the database that do not directly correspond to

the essence of the subject area).

Within the framework of OOP, objects have interfaces in the form of

special methods ("getters" and "setters", or properties in the C # language),

which are the only way to access the internal fields of the object from the

outside. The relational mod- el, by contrast, uses representations to

provide various data slices, and constraints to ensure data integrity.

Semantic gap issues between OOP and rdbms

Since for a software application to work with data, they need to be stored in

relational DBMSs and retrieved from there, the following problems arise

(partially described earlier in [2]):

Implementation of CRUD logic needs to be done for each class in the

application, manually programming the four above functions to maintain

the integrity of information in the database and to ensure encapsulation of

classes in the application.

The data downloaded from the RDBMS in the form of tables must be

converted to the corresponding application objects and then back to the

tables to be stored in the RDBMS, while the relationships between the

EXPLORING OBJECT-RELATIONAL MAPPING (ORM) SYSTEMS AND HOW TO EFFECTIVELY PROGRAM A DATA ACCESS MODEL PJAEE, 17 (3) (2020)

619

entities must be considered.

Often the object model contains more classes than the number of

corresponding tables in the database, which introduces additional

difficulties in converting data from objects to a tabular form.

Object-relational transformations in most cases should be bidirectional,

since you can make changes to the data on either side, and these changes

must be compared with the other side.

The data used by the software application can span several storage systems

(DBMS), each with its own protocols and features.

Solving the problem of semantic gap through the technology of object-

relational mapping (ORM)

The task is to provide work with data in the form of instances of classes,

rather than data tables, and, on the contrary, convert the data of class

objects into data suitable for storage in an RDBMS, and also provide an

interface for CRUD operations on data. One of the modern solutions to

this problem is the ORM technology, which solves the previously

described problems, while saving developers from writing a large amount

of monotonous code - ORM "creates an additional layer of abstraction in

order to facilitate manipulation of objects and relationships of the

subject area stored in the database" [3].

So, object-relational mapping (English object-relational mapping,

abbreviated as O/ R mapping or ORM) in the broad sense in computer

science is a method of converting data between incompatible systems for

their storage and processing using object- oriented programming

languages. However, in a narrower sense, which we will use in this and

subsequent sections, ORM is a library of a programming language that

maps objects of a relational model to objects of a programming language

and vice versa. ORM library automates data conversion between.

The task of the ORM system is to implement the correspondence between

the objects used in the application and related tables in the database - it

provides developers with a conceptual abstraction for comparing database

records with application objects. Such an abstraction significantly reduces

the amount of code that developers need to write [4, 5]. At the same

time, ORM automatically resolves many issues that arise when creating

such a correspondence - with the help of such mapped objects, developers

can access database records without worrying about the details of the

queries. In fact, the developer, when designing the application and writing

the code, can general- ly “forget” about the existence of a DBMS and

operate solely with OOP entities, and the rest of the work of the ORM will

be taken care of.

Advantages and disadvantages of using ORM technology in various types

of applications

EXPLORING OBJECT-RELATIONAL MAPPING (ORM) SYSTEMS AND HOW TO EFFECTIVELY PROGRAM A DATA ACCESS MODEL PJAEE, 17 (3) (2020)

Among the advantages of ORM distinguish (as previously described in [2]):

The presence of an explicit description of the database schema,

implemented in some programming language, which is located and edited

in one place;

An opportunity for an application developer to operate with the usual

tools of a programming language, that is, classes (objects) and their

fields and methods, rather than structures of a relational database;

The ability to isolate the program logic from the data interface, which

greatly simplifies the structure and code of the application;

Ability to automatically create database queries;

No need to change the application code and SQL queries when transferring

data to a DBMS of another manufacturer, since the corresponding ORM

adapter is responsible for this;

No need to write SQL queries and work out a significant amount of

program code (which is usually monotonous and error prone) in each case

of accessing data in the program;

Support by developed ORM implementations for mapping inheritance and

composition to tables;

Compared to traditional methods of interaction with RDBMSs, ORM in

most cases significantly reduces the amount of code that needs to be

written (often several times, see [5]).

The drawbacks of ORM tools are usually associated with a high level of

abstraction that hides what happens in the executable code. In addition, a

strong dependence on ORM libraries was described in [6] as the main

factor in creating poorly designed databases.

Also, with all its advantages, a specific implementation of ORM

technology may have several other disadvantages:

Potentially lower ORM performance compared to accessing the DBMS

directly through well-written SQL code.

The appearance of hard-to-debug errors in the program in those cases

where there are flaws in the implementation of ORM.

The presence of separate tables in the case of direct mapping of classes

into tables and the need to display fields that store collections, since many

ORMs are based on the idea that tables are entities.

If we talk about the main drawback of ORM - a potential decrease in

performance, the reason for this lies in the fact that most ORM systems

support a wide range of possible scenarios for working with data that no

single application can ever use in its entirety. The question of the

appropriateness of using ORM, as a rule, arises in large highly loaded

EXPLORING OBJECT-RELATIONAL MAPPING (ORM) SYSTEMS AND HOW TO EFFECTIVELY PROGRAM A DATA ACCESS MODEL PJAEE, 17 (3) (2020)

621

projects, however, it is worth considering such an important criterion as

the resources and time required for independent development of the

object-relational mapping layer. In the case of small projects that do not

face high workloads, the use of ORM is obvious. It should also be noted

that many ORM systems provide the developer with the ability to

manually write SQL query code if necessary. Moreover, to optimize

performance and reduce the number of DBMS calls, modern ORM

systems use local cache memory [7].

Entity Framework data access model programming approaches and

Entity Framework features

We also consider the key features of the Entity Framework (EF) and the

reasons for choosing this ORM library to use in this paper:

1. Cross-platform.

2. Modeling. EF creates an EDM (Entity Data Model) data model

based on POCO (Plain Old CLR Object) objects with the properties of

acquiring and setting various data types. This model is used when querying

or storing object data in the database.

3. Requests EF allows you to use LINQ (in C # or VB.NET) to

retrieve data from a database.

4. Track changes and save them to the database.

5.

6. Parallelism. EF uses optimistic concurrency by default to protect

changes made by another user (stream) from being overwritten from the

moment data is received from the database.

7. Transactions EF performs automatic transaction management

when querying or saving data, and provides options for setting up

transaction management.

8. Caching EF implements the first level of caching "out of the box" -

thus, a repeated request to already read data will return data from the

cache instead of re-accessing the database, thereby increasing

performance.

9. Setting the context. EF allows you to modify the data model using

attributes for da- ta annotation or the Fluent API to override the default

conventions.

10. Support for various DBMSs. EF implements layers of data

providers for most popular DBMSs (such as MS SQL Server, MySQL,

SQLite, PostgreSQL, Oracle, DB2, etc.).

EDM Data Model

Consider the internal structure of the Entity Framework. Its main element

is the EDM data model (from the English Entity Data Model), which

describes the relationship between classes in the application and tables in

the database [3, p. 20]. EDM stores in memory all metadata consisting of

three blocks:

1. A conceptual model that describes application classes and the

relationships be- tween them.

EXPLORING OBJECT-RELATIONAL MAPPING (ORM) SYSTEMS AND HOW TO EFFECTIVELY PROGRAM A DATA ACCESS MODEL PJAEE, 17 (3) (2020)

The storage model, which describes the related tables located in the

database. When using the “code first” approach, the storage model will

be generated on the basis of the conceptual model, and when using the

“DB first” approach, from the target database.

Mapping, which contains the correspondence scheme between the

conceptual model and the storage model, i.e., between application classes

and database tables.

All this information about the database structure (Storage model), about

the data model (Conceptual model) and about their mutual display is

contained in XML in a file with the extension .edmx.

EF performs CRUD operations using EDM - for example, it uses EDM to

implement SQL queries based on LINQ expressions by executing Select,

Insert, Update, Delete commands and converting the results obtained from

the database into application objects and vice versa.

Feature Services Layer

In addition to the EDM, the Entity Framework also contains a few

important components called layers, which we will consider later.

According to Codd’s fifth rule, “a relational database management system

must support at least one relational language” [3]. Entity Framework

offers two ways to access the DBMS: LINQ to Entities and Entity SQL.

1. LINQ to Entities is a LINQ extension (Language-Integrated

Query) for creating queries to the Conceptual model (i.e., application class

objects) in C # or VB.NET.

Entity SQL, according to [7], “is a repository-independent query

language like SQL. Entity SQL allows you to query the entity data,

presented either as objects or in tabular form. "This language is a bit

more complicated than LINQ to Entities and its consideration is beyond

the scope of this work.

The Object Services Layer is the most important component of the Entity

Framework, which allows the user to use the programming language

(LINQ to Entities or Entity SQL) to create database queries. This layer

works with objects of the application classes, synchronizing them with the

data in the database tables. In this layer, actions such as fixing the current

state of objects and converting the data obtained from the data- base

tables as a result of the query into objects of the application classes are

per- formed.

EXPLORING OBJECT-RELATIONAL MAPPING (ORM) SYSTEMS AND HOW TO EFFECTIVELY PROGRAM A DATA ACCESS MODEL PJAEE, 17 (3) (2020)

623

Data Provider Layer

If the developer interacts directly with the object services layer using LINQ

to Entities or Entity SQL, then further work on converting class data into

data suitable for storage in the DBMS is performed by data provider layers.

Initially, a LINQ to Entities or Entity SQL query is received by the Entity

Client Data Provider layer. Upon receiving the request, this layer

converts it to SQL and transfers it to the ADO.NET Data Provider Layer

(ADO.NET Data Provider), which is designed to directly access the

DBMS using ADO.NET technology. At this point, queries created on

LINQ to Entities or Entity SQL must be converted to SQL queries.

Description of test data set and test algorithm

It is generally accepted that the overhead of the data provider layer

(binding of input and output parameters, preparing the request for

execution, etc.) is small compared to the time of processing the request on

the DBMS side. Indeed, the total query execution time includes the

“slow” operations of the network and, especially, disk I / O. Also, the

query execution time depends on computer performance. But since all

tests were performed on the same machine, the database used was located

locally, and the purpose of the tests is to determine the difference in

performance, and not its absolute value, the above factors should not affect

the result of the study.

s,not having special knowledge of working with DBMS, while OLAP-

systems (English On-line Analytical Processing) are used for analytical

purposes, the data in them are used only occasionally and often in large

volumes and the need to develop special software APPENDIX to access

them does not arise, t. To. OLAP-systems users are generally specialized.

The selected OLTP scheme is characterized by a large number of short

CRUD online transactions, and the main emphasis is on very fast

request processing, maintaining data integrity in systems with multiple

access and efficiency, as measured by the number of transactions per

second. The OLTP database contains detailed and current data, and the

scheme used to store transactional data is an entity model, which meets

the classical requirements of the relational model.

The structure of the database “Adventure Works 2017” imitates the

subject model of the activities of a fictitious company that produces and

sells bicycles, accessories and spare parts for them. The database restored

from the AdventureWorks2017.bak archive published in the official

repository occupies 336 MB of disk space and has a complex structure -

it contains 68 tables with complex relationships, united by be- longing

to 5 schemes: Human Resources (frames), Person (individuals),

Production (manufacturing), Purchasing (purchases), Sales (sales).

Developed test applications access 22 database tables To evaluate the

performance of the Entity Framework (EF), a set of tests was per- formed

that simulated working with the database during the industrial operation of

EXPLORING OBJECT-RELATIONAL MAPPING (ORM) SYSTEMS AND HOW TO EFFECTIVELY PROGRAM A DATA ACCESS MODEL PJAEE, 17 (3) (2020)

the application, which was developed for the most common operations

when interacting with the DBMS. Although the subject area of the

database used is not important for testing purposes, to approximate the

actual operating conditions of the database, the developed testing

algorithm simulates the likely daily work with the database of each of the

17 sellers (sales representatives), consisting of the following CRUD

operations:

1. (READ) Table 18 downloads complete information on all seller’s

orders placed on a randomly selected date (for which the seller has at least

one order), including re- lated data from tables 1, 2, 4, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16, 17, 20, 21, 22 (which confirms the complex structure

of the relationships in the database).

2. (CREATE) 10 new customers are created in tables 8 and 16,

including entering contact details in the related tables 1, 3, 4, 7, 9.

3. (CREATE) 10 new orders are rented with today's date in tables 18

with the creation of 3 to 15 line items for each order in table 17.

4. (UPDATE) Contact details of 10 customers in tables 7 and 9 are

changed.

5. (UPDATE) The delivery date for today's 10 orders in table 18

changes.

6. (DELETE) 10 of today's orders are deleted from table 18 and the

related data from table 17.

Thus, diverse CRUD queries are performed, namely, reading from a large

number of related tables (step 1), creating new records, including related

tables (steps 2 and 3), updating data in previously existing records (step

4), and in the newly created (step 5) and deleting records (step 6). The

testing scheme described above is brief and de- scribes only the main

steps, excluding operations to extract related information from the

database.

Test applications are designed in such a way as to separately consider

the time spent on each type of CRUD operations (create, read, update,

delete). At the same time, the total time of the test is also measured, the

excess of which over the sum of measurements by type of operation may

indicate possible overhead costs.

To implement the EDM data access model in a test application using the

Entity Framework, we used automatic model generation for 22 database

tables using the Code First From Existing Database approach.

RESULTS

During testing, the test suite was sequentially launched (6 steps for each

of the 17 sellers), both using ORM and without it (using only SQL), 10

measurements for each application. The results for each test measurement

varied within acceptable limits - the difference between the minimum

and maximum time did not exceed 11% for an application with “pure”

SQL and 28% for an application with ORM, so the absence of statistical

outliers makes it possible to use average time values for all 10

EXPLORING OBJECT-RELATIONAL MAPPING (ORM) SYSTEMS AND HOW TO EFFECTIVELY PROGRAM A DATA ACCESS MODEL PJAEE, 17 (3) (2020)

625

measurements. The unaccounted time in the form of the difference between

the total operating time of the application and the amount of time spent on

each type of CRUD operations was no more than 0.41% for all tests, and

therefore it can be neglected.

Initial testing revealed a very significant difference in the performance of

Entity Framework (EF) and “pure” SQL - the latter worked on average 37

times faster (see Fig. 1). This difference was due to a much slower

execution of the create, update, and delete operations, while the read

operations through EF, on the contrary, were faster by an average of 1.6

times, but the share of the reading time was negligibly small relative to

the total test time (0.28% when using ORM), and therefore it did not have a

big impact on the final result. In addition, an application using EF

consumed approximately 2 times more RAM compared to using only SQL

(maximum consumption of 74 MB versus 36 MB).

Fig. 1. Average runtime of one test by types of CRUD operations

Given such a large drop in performance when using the Entity Framework,

a hypothesis was put forward about the insufficiently optimal way to use

this technology and a number of techniques were applied to optimize

calls to the database context from those described in [4], namely:

Using different database contexts for each testing step (except steps 5

and 6, for which the same data context was still used, because in these

steps the program accesses a set of the same records). In order to use

different contexts, the code of each step was wrapped in the using

directive with the initialization of the context inside it, which, at the end of

each step, provided an automatic call to the Dispose method, which cleans

up the resources used.

Using different contexts gives us the opportunity to use the

EXPLORING OBJECT-RELATIONAL MAPPING (ORM) SYSTEMS AND HOW TO EFFECTIVELY PROGRAM A DATA ACCESS MODEL PJAEE, 17 (3) (2020)

 Fig. 2. Average runtime for one test after optimization

The results of the optimization and final testing allow us to conclude that

the wide- spread opinion about the strong influence of the use of ORM

systems on reducing the performance of object-oriented applications does

not find confirmation with the com- petent use of modern ORM libraries

in accordance with official documentation and recommendations of

specialists with sufficient experience using ORM technologies. At the

same time, ORM systems provide developers with a conceptual abstraction

for comparing database records with program objects, which allows not

only to create and maintain applications oriented to work with relational

DBMS with less code, but also simplifies their development and support,

automatically resolving many issues that arise when creating such a

mapping, since developers can access database records without worrying

about the details of SQL queries

CONCLUSION

In this paper, we examined the concept of object-relational mapping

(ORM), the pre- requisites for its use, advantages and disadvantages, as

well as a comparison with possible alternatives.

At the design level, the semantic gap between the object-oriented

approach (OOP) in programming and relational DBMSs is an inevitable

aspect of almost any application that interacts with data. Nevertheless,

OOP in programming has long been a de facto standard, and at the same

time, the prevalence of relational DBMSs, their effectiveness in querying

large data arrays and other advantages make it necessary to find a

compromise between the convenience of developing applications in an

object- oriented style and limitations superimposed on the designed

system using an RDBMS.

At the implementation level, there are several ways to implement the

effective interaction of an object-oriented application with a relational

database management system, which, however, are too time-consuming

and often error-prone. To take ad- vantage of relational DBMSs along

with the convenience of OOP, Object Relational Mapping (ORM) tools

are used to provide a more productive and efficient development process.

EXPLORING OBJECT-RELATIONAL MAPPING (ORM) SYSTEMS AND HOW TO EFFECTIVELY PROGRAM A DATA ACCESS MODEL PJAEE, 17 (3) (2020)

627

Summing up the theoretical part of the research, we can say that ORM is a

tool for solving the problem of semantic gap between relational and object

data models, which forces you to describe the data structure twice - in

the essence of relational DBMS (tables) and object-oriented

programming (classes), introducing additional costs and difficulties in the

process of developing applications that interact with RDBMS. ORM is

used to simplify the process of saving objects to a relational database and

retrieving them, while the ORM library itself takes care of converting

data between two incompatible states.

However, in practice, the most common problem when using ORM

libraries is a decrease in application performance compared to access to

the database by executing SQL queries written by hand. A few studies by

Russian and foreign authors indicate a significant drop in speed when

working with databases through ORM, sometimes by 5 or more times.

Since existing studies show a significant variation in the results, and there

are no studies conducted using the latest version of Entity Framework 6.

Thus, the results of the optimization and final testing allow us to conclude

that the widespread opinion about the strong influence of the use of ORM

systems on reducing the performance of object-oriented applications does

not find confirmation with the competent use of modern ORM libraries

in accordance with official documentation and recommendations

specialists with sufficient experience in using ORM technologies.

ACKNOWLEDGMENTS

REFERENCES

Ambler, S.W.: The Object-Relational Impedance Mismatch. Ambysoft

Inc. (2010).

http://www.agiledata.org/essays/impedanceMismatch.html, last

accessed 2016/11/21.

Codd, E.F.: Derivability, Redundancy, and Consistency of Relations

Stored in Large Data Banks. Research Report, IBM Research

Division, RJ 599 (#12343), (1969).

Codd, E.F.: The Relational Model for Database Management. Addison-

Wesley (1990).

Ritchie, C.: Relational Database Principles. Thomson Learning (2004).

Sumathi, S., Esakkirajan, S.: Fundamentals of Relational Database

Management Systems (Studies in Computational Intelligence).

Springer-Verlag, Berlin Heidelberd (2010).

DB-Engine Ranking. DB-Engines. https://db-engines.com/en/ranking,

last accessed 2016/11/21.

Captain, F.A.: Six-Step Relational Database Design. (2013).

http://www.agiledata.org/essays/impedanceMismatch.html

