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ABSTRACT  

Let G be the group of units of a monoid S. A unit regular semigroup S  should satisfy the 

condition that corresponding to each  𝑥 ∈ 𝑆 there should exist an element 𝑢 ∈ 𝐺 such that 

𝑥 = 𝑥𝑢𝑥 . Consider  𝑆0 = 𝑆\𝐺  as the set  of non units of S. Then  evidently 𝑆0 is a regular 

sub semigroup of S. Then  𝑆 = 𝑆0 ∪ 𝐺   𝑎𝑛𝑑 𝑆0 ∩ 𝐺 = ∅. Conversely starting from a regular 

semigroup So and a group G we have constructed a unit regular semigroup with  S with G as 

group of units of S  and 𝑆0as semigroup of non-units of S. .  

1. PRELIMINARIES 

For this construction we have introduced the notion of translational hulls. A 

right translation of a semigroup S is a transformation ρ satisfying the 

condition that 𝑥(𝑦𝜌) = (𝑥𝑦)ρ for all x, y in S. A left  translation of a 

semigroup S is a transformation λ satisfying the condition that (𝑥𝜆)𝑦 =

(𝑥𝑦)𝜆  for all x, y in S. If 𝑥(𝑦𝜆) = (𝑥𝜌)𝑦 for all x, y in S, then we say that a 

right translation ρ and a left translation λ are linked. Corresponding to each 

element of the semigroup S we can introduce  a transformation 𝜌𝑎(𝜆𝑎) of S 

given  by 𝑥𝜌𝑎 = 𝑥𝑎 [𝑥𝜆𝑎 = 𝑎𝑥] for all x in S. If we consider 𝑇(𝑆) as the 

full transformation semigroup on the set S then evidently these 

transformations are elements of 𝑇(𝑆). For any element 𝑎 ∈ 𝑆 the inner 

translations 𝜌𝑎  and 𝜆𝑎  are linked. Also the set of left (right) translations 

can be seen to be  a sub semigroup of 𝑇(𝑆). 

The translational hull Ω(𝑆) of a semigroup S is defined to be the set of all 

ordered pairs(𝜆, 𝜌) of linked left and right translations λ and ρ of S 

We define the translational hull Ω(𝑆) of a semigroup S to be the set of all 

pairs (𝜆, 𝜌) of linked right and left  translations ρ and 𝜆 of S. If (𝜆1, 𝜌1), 

(𝜆2, 𝜌2) ∈ Ω(𝑆), then so is (𝜆2𝜆1, 𝜌1𝜌2)  . In  Ω(𝑆)  we may  define a binary 

operation by,  
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(𝜆1, 𝜌1) (𝜆2, 𝜌2) = (𝜆2𝜆1, 𝜌1𝜌2)  

Associative property is true and so Ω(𝑆)  is a semigroup. Let Ωo (S) =
{(𝜆𝑎, 𝜌𝑎); 𝑎 ∈ 𝑆}. Then  

Ω0(𝑆) ⊑ Ω(𝑆) since 𝜌𝑎 and 𝜆𝑎 are linked. For any a and b in S, we have   

(𝜆𝑎, 𝜌𝑎) (𝜆𝑏 , 𝜌𝑏)= (𝜆𝑏𝜆𝑎, 𝜌𝑎𝜌𝑏)= (𝜆𝑎𝑏 , 𝜌𝑎𝑏). 

Starting from a regular semigroup So and a group G, the method of 

constructing a unit regular semigroup is illustrated in the following 

theorem.  With respect to the translational hull So we give the conditions 

required for this construction .  

2. A CONSTRUCTION  

Given a regular semigroup and a group, we give the conditions required for 

the construction of unit regular semigroups . 

THEOREM 2.1. Let G be a group and 𝑆0 a regular semigroup. Let the 

translational hull of the semigroup 𝑆0be Ω(𝑆0) and consider Ψ to be a 

homomorphism from G to Ω(𝑆0) defined  by 𝜓(𝑢) = (𝜓1(𝑢), 𝜓2(𝑢)). 

Suppose that the  following conditions are satisfied by Ψ 

𝜓1(1) and 𝜓2(1) will act as  identity permutations on 𝑆0. 

(i) For every 𝑥 ∈ 𝑆0, there exists some 𝑢 ∈ 𝐺 such that (𝑥)𝜓1(𝑢) ∈ 𝐸(𝑆0) 

(or (𝑥)𝜓2(𝑢) ∈ 𝐸(𝑆0) , considering   𝐸(𝑆0) as  the set of idempotents of 

the regular semigroup 𝑆0 

(ii) 𝜓1(𝑢1)𝜓2(𝑢2) = 𝜓2(𝑢2)𝜓1(𝑢1) for any two elements  𝑢1,𝑢2 ∈ 𝐺. 

Define S to be the disjoint union of 𝑆0 and G. That is 𝑆 = 𝑆0 ∪ 𝐺. The 

binary operation on S can be defined as follows. 𝑢𝑥 = (𝑥)𝜓1(𝑢) and  𝑥𝑢 =
(𝑥)𝜓2(𝑢) for 𝑥 ∈ 𝑆0 and 𝑢 ∈ 𝐺. If u and x are elements of G or if they are 

elements of 𝑆0, then the product will be same as that in G or 𝑆0. Then 𝑆 =

𝑆0 ∪ 𝐺 will be a unit regular semigroup with semigroup of non units as 𝑆0 

and group  of units as G.  

Proof : We will first show that the associative property holds in S.  That is 

we have to prove that 

(𝑖)𝑢(𝑥𝑦) = (𝑢𝑥)𝑦 for 𝑢 ∈ 𝐺 and 𝑥, 𝑦 ∈ 𝑆0 

(𝑖𝑖)(𝑥𝑦)𝑢 = 𝑥(𝑦𝑢) for 𝑢 ∈ 𝐺 and 𝑥, 𝑦 ∈ 𝑆0 

(𝑖𝑖𝑖)𝑥(𝑢𝑦) = (𝑥𝑢)𝑦 for 𝑢 ∈ 𝐺 and 𝑥, 𝑦 ∈ 𝑆0 

(𝑖𝑣)(𝑢1𝑢2)𝑥 = 𝑢1(𝑢2𝑥) for 𝑢1, 𝑢2 ∈ 𝐺 and 𝑥 ∈ 𝑆0 

(v)(𝑥(𝑢1𝑢2) = (𝑥𝑢1)𝑢2 for 𝑢1, 𝑢2 ∈ 𝐺 and 𝑥 ∈ 𝑆0 

(𝑣𝑖)(𝑢1𝑥)𝑢2 = 𝑢1(𝑥𝑢2), for 𝑢1, 𝑢2 ∈ 𝐺 and 𝑥 ∈ 𝑆0 
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Now since 𝜓1(𝑢)is a left translation,(𝑥𝜓1(𝑢))𝑦 = (𝑥𝑦)Ψ1(u) . So 

𝑢(𝑥𝑦) = (𝑢𝑥)𝑦 for 𝑢 ∈ 𝐺 and 𝑥, 𝑦∈ 𝑆0. Now since 𝜓2(𝑢) is a right 

translation 𝑥(𝑦𝜓2(𝑢)) = (𝑥𝑦)𝜓2(𝑢) .Therefore  (𝑥𝑦)𝑢 = 𝑥(𝑦𝑢) for 𝑢 ∈ 𝐺 

and 𝑥, 𝑦 ∈ 𝑆0. Because  Ψ is a homomorphism we get  𝜓(𝑢1𝑢2) =

(𝜓1(𝑢1𝑢2), 𝜓2(𝑢1𝑢2)) . Also  we have  

                  𝜓(𝑢1)𝜓(𝑢2)     = (𝜓1(𝑢1), 𝜓2(𝑢1)) (𝜓1(𝑢2), 𝜓2(𝑢2))   

                                            =  (𝜓1(𝑢2)𝜓1(𝑢1), 𝜓2(𝑢1)𝜓2(𝑢2)) 

Hence  𝜓1(𝑢1𝑢2) = 𝜓1(𝑢2)𝜓1(𝑢1) and 𝜓2(𝑢1𝑢2) =   𝜓2(𝑢1)𝜓2(𝑢2). So 

(𝑥)𝜓1(𝑢1𝑢2) = (𝑥)[𝜓1(𝑢2)𝜓1(𝑢1)].   

Therefore  (𝑢1𝑢2)𝑥 = [(𝑥)𝜓1(𝑢2)]𝜓1(𝑢1) = 𝑢1(𝑢2𝑥). 

In a similar way  since 𝜓2(𝑢1𝑢2) = 𝜓2(𝑢1)𝜓2(𝑢2)we get that   𝑥(𝑢1𝑢2) =
(𝑥𝑢1)𝑢2 for 𝑢1, 𝑢2 ∈ 𝐺 ,𝑥 ∈ 𝑆0.  Because  𝜓1(𝑢) and 𝜓2(𝑢) are linked, we 

get  𝑥(𝑦𝜓1(𝑢)) = (𝑥𝜓2(𝑢))𝑦 .So 𝑥(𝑢𝑦) = (𝑥𝑢)𝑦 for 𝑢 ∈ and 𝑥, 𝑦 ∈ 𝑆0. 

By condition  (iii) we have  (𝑥)[𝜓1(𝑢1)𝜓2(𝑢2)] =(𝑥)[𝜓2(𝑢2)𝜓1(𝑢1)]  for 

𝑢1, 𝑢2 ∈ 𝐺 and 𝑥 ∈ 𝑆0. Therefore  [(𝑥)𝜓1(𝑢1)]𝜓2(𝑢2) = 

[(𝑥)𝜓2(𝑢2)]𝜓1(𝑢1)  .Hence (𝑢1𝑥)𝑢2 = 𝑢1(𝑥𝑢2). So  S is a semigroup. 

Now since (𝑥)𝜓1(1) = 𝑥 and  (𝑥)𝜓2(1) = 𝑥 for any 𝑥 ∈ 𝑆0we get that 

𝑥1 = 𝑥 and 1𝑥 = 𝑥 for every x ∈𝑆0. Therefore  the identity element of G 

will be same  as the identity element of S. Hence S is a monoid.   

Now  we show  that S is unit regular .For x ∈𝑆0, let (𝑥)𝜓1(𝑢) ∈ 𝐸(𝑆0) for 

some element  𝑢 ∈ 𝐺.. Hence , 𝑢𝑥 ∈ 𝐸(𝑆0) So (𝑢𝑥)(𝑢𝑥) = 𝑢𝑥. So 

𝑢(𝑥𝑢𝑥) = 𝑢𝑥. Therefore  𝑥𝑢𝑥 = 𝑥. Hence  S will be  a unit regular 

semigroup with group of units as G.  .    □ 

Next we will show that if S is any unit regular semigroup with G as group 

of units and 𝑆0as semigroup of non-units then all the requirements of the 

above theorem are satisfied. 

THEOREM 2.2. Consider  S to be a unit regular semigroup. Then there 

exists a subgroup G of S and a regular sub semigroup 𝑆0 of S such that the 

mapping Ψ from G to  Ω(𝑆0) given by 𝜓(𝑢) = (𝜓1(𝑢), 𝜓2 (𝑢)) is a 

homomorphism such that  

(i) 𝜓1(1)and 𝜓2(1) act as the  identity permutations on 𝑆0 

             (ii)        (𝑥)𝜓1(𝑢) [ or (x) 𝜓2 (𝑢)) ]∈ 𝐸(𝑆0) 

(ii) 𝜓1(𝑢1) 𝜓2 (𝑢2) = 𝜓2 (𝑢2)  𝜓1(𝑢1)  for any 𝑢1, 𝑢2  ∈ 𝐺. 

Proof : Consider G to be the group of units of S and 𝑆0 to be the set of all 

non units of S.If 𝑢 ∈ 𝐺 and  𝑥 ∈ 𝑆0, then ux and 𝑥𝑢 ∈ 𝑆0.So we can define 

two functions such as  𝜓1(𝑢) and 𝜓2(𝑢)  defined by       

𝑥𝜓1(𝑢) = 𝑢𝑥 and 𝑥𝜓2(𝑢) = 𝑥𝑢, for 𝑥 ∈ 𝑆0.  
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Hence 𝜓1(𝑢) and 𝜓2(𝑢) are respectively the left and right translations of 

𝑆0. Also 𝜓1(𝑢) and 𝜓2(𝑢) are linked since 𝑥(𝑢𝑦) = (𝑥𝑢)𝑦for 𝑢 ∈ 𝐺 and 

𝑥, 𝑦 ∈ 𝑆0 Hence (𝜓1(𝑢), 𝜓2 (𝑢)) ∈ Ω(𝑆0) .Now define a function Ψ from G 

to Ω(𝑆0) as 𝜓(𝑢) = (𝜓1(𝑢), 𝜓2(𝑢)).Then clearly Ψ is a homomorphism. 

Since S is unit regular, for any 𝑥 ∈ 𝑆 there is some 𝑢 ∈ 𝐺 such that  𝑥𝑢𝑥 =

𝑥. Hence ux and xu belong to 𝐸(𝑆0).Therefore (𝑥)𝜓1(𝑢) [ or (x) 𝜓2 (𝑢)) ]∈

𝐸(𝑆0)  for some 𝑢 ∈ 𝐺.  

Clearly   𝜓1(1) and 𝜓1(1) act as  the identity permutations on 𝑆0. Now  for 

𝑢1, 𝑢2  ∈ 𝐺.  and 𝑥 ∈ 𝑆0 (𝑢1𝑥)𝑢2 = 𝑢1(𝑥𝑢2). Therefore    

[(𝑥)𝜓1(𝑢1) ] 𝜓2 (𝑢2)   =  [(𝑥)𝜓2(𝑢2) ] 𝜓1 (𝑢1)  . So, (x) [𝜓1(𝑢1) 

𝜓2 (𝑢2)] = (x)  [𝜓2 (𝑢2)  𝜓1(𝑢1) ] for all 𝑥 ∈ 𝑆0.  Therefore  𝜓1(𝑢1) 

𝜓2 (𝑢2) = 𝜓2 (𝑢2)  𝜓1(𝑢1)      , 

REFERENCES  

• Clifford A.H and Preston G.B., The algebraic theory of semigroups, 

Surveys of the    American Mathematical society 7, Providence, 1961.  

• K.R. Goodearl, Von Neumann regular rings, (Pitman, 1979). 

• Hickey J.B and M.V. Lawson, Unit regular monoids, University of 

Glasgow, Department  of Mathematics.  

• Howie J.M.,An introduction to semigroup Theory, Academic press, 

New York  

• Rajan. A.R., On Uniquely unit regular semigroups. Proc. 6th 

Ramanujan symposium, University of Madras, Chennai (1999), 91-96.  

• Rajan. A.R., Translational hulls and unit regular semigroups Proc. Of 

the National seminar on Algebra and Discrete Mathematics.  ,University of 

Madras,(2003) 46-51.  

• Veeramony R., Unit regular semigroups, Proc.International 

Symposium on Theory of Regular Semigroups and Applications, 

University of Kerala, 1986, 228-240.  

• V.K. Sreeja (2004), “ A study of unit regular semigroups”(Ph. d 

Thesis),  University of Kerala, Department of Mathematics, Kerala, 

India 

 

  


