
UNDERSTANDING OF PE HEADERS AND ANALYZING PE FILE PJAEE, 17 (7) (2020)

8611

UNDERSTANDING OF PE HEADERS AND ANALYZING PE FILE

Maxim Demidenko
1*

, Alzhan Kaipiyev
2
, Maryam Var Naseri

3
, Yogeswaran A/L Nathan

4
,

Nor Afifah Binti Sabri
5

1*
Student at Asia Pacific University.

2
Student at Asia Pacific University.

3
Lecturer at Asia Pacific University.

4
Lecturer at Asia Pacific University.

5
Lecturer at Asia Pacific University.

1*
tp039365@mail.apu.edu.my,

2
tp039400@mail.apu.edu.my,

3
maryam.var@staffemail.apu.ed

u.my,
4
yogeswaran.nathan@apu.edu.my,

5
afifah@staffemail.apu.edu.my

Maxim Demidenko, Alzhan Kaipiyev, Maryam Var Naseri, Yogeswaran A/L Nathan,

Nor Afifah Binti Sabri. Understanding of PE Headers and Analyzing PE File--

Palarch’s Journal of Archaeology of Egypt/Egyptology 17(4), 8611-8620. ISSN 1567-

214x.

keywords: Portable Executable, Reverse Engineering, Cyber Security.

ABSTRACT:

The purpose of the paper is to explain the workflow of the PE files in detailed format. This

includes understanding of all data structures inside the file and useful information that is

possible to get. After the explanation the simple Python script is provided as the way to get

this data structures.

INTRODUCTION
The topic is part of the Malware static analysis technique. All data structures

are containing official information from Microsoft documentation explained

by writer. Also, all links to Microsoft official documentation are provided in

reference. The Python scripting is done using “pefile” library and it was

developed by Ero Carrera. This module allows to extract the important part of

the information from the file that could help in investigation. For this module

Python should be upgraded to Python 3.

MATERIALS AND METHODS

The first thing before understanding what is Portable Executable file (PE).

Reader should understand basics principle how digital storage and processing

unit are working inside the systems.

UNDERSTANDING OF PE HEADERS AND ANALYZING PE FILE PJAEE, 17 (7) (2020)

8612

 BYTE – unit of storage of information. A set of bits processed by a

computer at once. In modern computing systems, a byte consists of eight

bits and, accordingly,takes one of 256 different values.

 WORD and DWORD – machine-dependent and platform-dependent

value, measured in bits or bytes equal to the capacity of the processor

registers. The recording of information in memory, as well as its extraction

from memory is made by addresses. This property of memory is called

addressability.

 RVA-Relative Virtual Address the address of the file after its loaded

inside the memory. It differs from the position the file in hard disk.

 RAW- designation for an indefinite volume file system. The RAWFS

component exists and is built into the kernel itself, but the only purpose of

this component is to respond to requests from applications about the size

of the volume and the name of the file system.

With the advent of the Windows NT 3.1 operating system, Microsoft switched

to the PE format. All later versions of Windows, including Windows 95/98 /

ME, support this format. The format retained limited support for the existing

(MZ) to bridge the gap between DOS-based systems and NT systems. The

first 2 bytes of the PE file contain the signature 0x4D 0x5A - “MZ” (as a

successor of the MZ format). Next - the double word at offset 0x3C contains

the address of the PE header. The latter begins with the signature 0x50 0x45 -

"PE".

2.1.PE Headers

Figure 1 PE file global structure

PE format is the format of executable files of all 32-bit and 64-bit Windows

systems. Currently there are two PE file formats: PE32 and PE32 +. PE32

format for x86 systems, and PE32 + for x64. The described structures can be

observed in the “WINNT.h” header file that comes with the Windows

SDK.(Microsoft, 2019)

UNDERSTANDING OF PE HEADERS AND ANALYZING PE FILE PJAEE, 17 (7) (2020)

8613

Also, PE is a modified version of the COFF file format for Unix. PE / COFF is

an alternative term for developing Windows.

2.1.1. DOS-Header (IMAGE_DOS_HEADER)

1. typedef struct_IMAGE_DOS_HEADER{
2. chare_magic[2]={'M','Z'};
3. WORDlastsize;
4. WORDnblocks;
5. WORDnreloc;
6. WORDhdrsize;
7. WORDminalloc;
8. WORDmaxalloc;
9. WORD*ss;// 2 byte value
10. WORD*sp;// 2 byte value
11. WORDchecksum;
12. WORD*ip;// 2 byte value
13. WORD*cs;// 2 byte value
14. WORDrelocpos;
15. WORDnoverlay;
16. WORDreserved1[4];
17. WORDoem_id;
18. WORDoem_info;
19. WORDreserved2[10];
20. DWORDe_lfanew;
21. }

Data Structure 1 DOS-Header.

The Image_DOS_Header or simply DOS Header is the fit structure appearing

in each executable. The most important fields in this structure are “e_magic”

and “e_lfnew”. The magic number of the executable file should be filled with

“MZ” value. MZ is the unique identifier of the executable files and stands for

Mark Zbikowski (the creator of the DOS). All other fields are not that useful

in file analysis because they are only helpers in programs execution.

After first 0x64 Bytes of information file continues with the DOS-stub.

Usually this section does not contain anything but “This program cannot be

run in DOS mode.”, or “This program must be run under win32” which are

default for some compilers. This section is fully responsible for executable

behavior if it would be launched on DOS and made for backwards

compatibility. Due to the progress of computing there is almost impossible to

find the program that will have unique execution statements for DOS.

2.1.2. PE-Header (IMAGE_NT_HEADER)

Image_NT_Header or PE header is the next structure after the DOS header

and it takes next 0x18 bytes of memory. This header contains of 0x4 bytes

allocated for signature and two large structs that would be analyzed next.

Those structs are: IMAGE_FILE_HEADER and

IMAGE_OPTIONAL_HEADER. (Microsoft, 2018).

1. typedefstruct _IMAGE_NT_HEADERS{
2. DWORDSignature;
3. IMAGE_FILE_HEADERFileHeader;
4. IMAGE_OPTIONAL_HEADEROptionalHeader;

UNDERSTANDING OF PE HEADERS AND ANALYZING PE FILE PJAEE, 17 (7) (2020)

8614

5. } IMAGE_NT_HEADERS,*PIMAGE_NT_HEADERS;

Data Structure 2 PE Header

2.1.3. File-Header or COFF Header (IMAGE_FILE_HEADER)

This header contains only the information about the file characteristics.

Shortly, “Machine” is 2 byte identifier to represent the system architecture,

“NumberOfSections” is a number of sections in PE file that is limited to 96,

“TimeDateStamp” represents the creation date of the file,

“PointerToSymbolTable” the shift of RAW to characters table based on

“SizeOfOptionalHeader” (Both are used rarely and usually filled with 0),

“Characteristics” represents some file characteristics (using predefined

constants). (Microsoft, 2018)

1. typedef structIMAGE_FILE_HEADER{
2. WORDMachine;
3. WORDNumberOfSections;
4. DWORDTimeDateStamp;
5. DWORDPointerToSymbolTable;
6. DWORDNumberOfSymbols;
7. WORDSizeOfOptionalHeader;
8. WORDCharacteristics;
9. } IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

Data Structure 3 File-Header.

2.1.4. OptionalHeader (IMAGE_OPTIONAL_HEADER)

Despite the name, Image_Optional_Header or Optional Header is not optional.

This header is mandatory for proper execution of the PE file. This header has

two main format types: PE32 and PE32+ (IMAGE_OPTIONAL_HEADER32

and IMAGE_OPTIONAL_HEADER64 accordingly). The type is stores in the

Magic number in first 0x16bit of the struct. (Microsoft, 2018)

1. typedefstruct _IMAGE_OPTIONAL_HEADER {
2. WORDMagic;
3. BYTEMajorLinkerVersion;
4. BYTEMinorLinkerVersion;
5. DWORDSizeOfCode;
6. DWORDSizeOfInitializedData;
7. DWORDSizeOfUninitializedData;
8. DWORDAddressOfEntryPoint;
9. DWORDBaseOfCode;
10. DWORDBaseOfData;
11. DWORDImageBase;
12. DWORDSectionAlignment;
13. DWORDFileAlignment;
14. WORDMajorOperatingSystemVersion;
15. WORDMinorOperatingSystemVersion;
16. WORDMajorImageVersion;
17. WORDMinorImageVersion;
18. WORDMajorSubsystemVersion;
19. WORDMinorSubsystemVersion;
20. DWORDWin32VersionValue;

UNDERSTANDING OF PE HEADERS AND ANALYZING PE FILE PJAEE, 17 (7) (2020)

8615

21. DWORDSizeOfImage;
22. DWORDSizeOfHeaders;
23. DWORDCheckSum;
24. WORDSubsystem;
25. WORDDllCharacteristics;
26. DWORDSizeOfStackReserve;
27. DWORDSizeOfStackCommit;
28. DWORDSizeOfHeapReserve;
29. DWORDSizeOfHeapCommit;
30. DWORDLoaderFlags;
31. DWORDNumberOfRvaAndSizes;
32. IMAGE_DATA_DIRECTORYDataDirectory[IMAGE_NUMBEROF_DIRECTO

RY_ENTRIES];

33. } IMAGE_OPTIONAL_HEADER,*PIMAGE_OPTIONAL_HEADER;

Data Structure 4 Optional Header

Some Explanations:

 MajorLinkerVersion - The major version number of the linker.

 MinorLinkerVersion- The minor version number of the linker.

 SizeOfCode - The size of the code section, in bytes, or the sum of all such

sections if there are multiple code sections.

 SizeOfInitializedData -The size of the initialized data section, in bytes, or

the sum of all such sections if there are multiple initialized data sections.

 SizeOfUninitializedData -The size of the uninitialized data section, in

bytes, or the sum of all such sections if there are multiple uninitialized data

sections. (Microsoft, 2018)

The struct Image Data Directory is saving predefined constants for VA and

RVA. Constants are defined with numbers from 0 to 14 and have the format of

“IMAGE_DIRECTORY_ENTRY_TYPE”. And have thow predefined types:

EXPORT; IMPORT; RESOURCE;EXCEPTION; SECURITY;

BASERELOC;DEBUG; COPYRIGHT; ARCHITECTURE; GLOBALPTR;

TLS; LOAD_CONFIG; BOUND_IMPOT; IAT; DELAY_IMPORT;

COM_DESCRIPTOR.

1. typedefstruct _IMAGE_DATA_DIRECTORY {
2. DWORDVirtualAddress;
3. DWORDSize;
4. } IMAGE_DATA_DIRECTORY,*PIMAGE_DATA_DIRECTORY;

Data Structure 5 Image Data Directory

2.1.5. Section-header (IMAGE_SECTION_HEADER)

Data Directory is followed by Data Section. Table of section are divided by

some king of island which has their “NumberOfSections”. Each section has

their own rules, rights and instructions. Their size 0x28 bytes. Number of

Sections are located in file Header. Name of the section has length in 8

symbols”. Virtual Size DWORD is a size of the virtual section.

SizeOfRawData the size of the section in file. VirtualAddress is RVA of the

section. Characteristics is an instruction for section which will load it in file.

UNDERSTANDING OF PE HEADERS AND ANALYZING PE FILE PJAEE, 17 (7) (2020)

8616

Section with resources should followed by .rsrc, but other section can be

anything. Section is an environment that loading itself in virtual memory and

working inside this memory. The virtual address is created in ImageBase.

(Microsoft, 2019)

1. typedefstruct _IMAGE_SECTION_HEADER {
2. BYTEName[IMAGE_SIZEOF_SHORT_NAME];
3. DWORDPhysicalAddress;
4. DWORDVirtualSize;
5. DWORDVirtualAddress;
6. DWORDSizeOfRawData;
7. DWORDPointerToRawData;
8. DWORDPointerToRelocations;
9. DWORDPointerToLinenumbers;
10. WORDNumberOfRelocations;
11. WORDNumberOfLinenumbers;
12. DWORDCharacteristics;
13. } IMAGE_SECTION_HEADER,*PIMAGE_SECTION_HEADER;

Data Structure 6 Section Header.

2.1.6. Export table (Mostly used in .dll)

In the very first element of the DataDirectory array, the RVA is stored on the

export table, which is actually represented by the

IMAGE_EXPORT_DIRECTORY structure. This table is characteristic of

dynamic library files (.dll). The main task of the table is to link the exported

functions with their RVA. (Pietrek, 2010)

1. typedefstruct _IMAGE_EXPORT_DIRECTORY {
2. DWORDCharacteristics;
3. DWORDTimeDateStamp;
4. WORDMajorVersion;
5. WORDMinorVersion;
6. DWORDName;
7. DWORDBase;
8. DWORDNumberOfFunctions;
9. DWORDNumberOfNames;
10. DWORDAddressOfFunctions;
11. DWORDAddressOfNames;
12. DWORDAddressOfNameOrdinals;
13. }IMAGE_EXPORT_DIRECTORY,*PIMAGE_EXPORT_DIRECTORY;

Data Structure 7 Export Directory

UNDERSTANDING OF PE HEADERS AND ANALYZING PE FILE PJAEE, 17 (7) (2020)

8617

Figure 2 Image Export Directory

This structure contains three pointers to three different tables. This is a table of

names(AddressOfNames),ordinals(AddressOfNamesOrdinals),

addresses(AddressOfFunctions).

The Name field stores the RVA of the dynamic library name. The ordinal is

like an intermediary, between the table of names and the table of addresses

and is an array of indices (the size of the index is 2 bytes).

2.1.7. Imports (IMAGE_IMPORT_DESCRIPTOR)

The Import Descriptor is the following table after the table of exports. To

calculate its address, it is needed to find DataDirectory struct. After getting the

RVA of “IMAGE_DIRECTORY_ENTRY_IMPORT” it is needed to get

RAW value and follow the path shown on “Figure 3 Import descriptor path”

Figure 3 Import descriptor path

1. typedefstruct _IMAGE_IMPORT_DESCRIPTOR {
2. DWORDCharacteristics;
3. DWORDOriginalFirstThunk;
4. DWORDTimeDateStamp;
5. DWORDForwarderChain;
6. DWORDName;
7. DWORDFirstThunk;
8. }IMAGE_IMPORT_DESCRIPTOR,*PIMAGE_IMPORT_DESCRIPTOR;

Data Structure 8 Import Descriptor

RESULTS AND IMPLEMENTATION

Firstly, pre-install the module into system to make everything work. Open and

run CMD with administrative privilege and type the following commands

inside it. (Carrera, 2019)

UNDERSTANDING OF PE HEADERS AND ANALYZING PE FILE PJAEE, 17 (7) (2020)

8618

 $git clone https://github.com/erocarrera/pefile.git

 $ cd pefile

 $ pip install -r requirements.txt

 $ python setup.py install

After all this procedure are done. Then open the Python in your IDE or CMD.

Then type “import pefile”. Load the file inside your code and use function

pefile.PE(file path).

Figure 4 Python Code Example Snippet 1

This following screenshot showing the small snippet that allow to find the

e_magic value (the address of the MZ string) and Signature value is a 4-byte

signature that identifies the file as a PE format image file.

Figure 5 Python Code Example Output 1.

This script will expand more information about Data Directory with the

Virtual address and size of the directory.

Figure 6 Python Code Example Snippet 2

The output will show all IMAGE_OPTIONAL_HEADER. This directory has

information about address and size that has found in file.

Figure 7 Python Code Example Output 2

UNDERSTANDING OF PE HEADERS AND ANALYZING PE FILE PJAEE, 17 (7) (2020)

8619

This script search for DLL inside the file using

DIRECTORY_ENTRY_IMPORT. Address and size pairs for special tables

that are found in the image file and are used by the operating system (for

example, the import table and the export table). (Microsoft, 2019).

Figure 8 Python Code Example Snippet 3

This output shows all DLL and Functions used inside it. That could help in

future debugging or Dynamic Analysis. The address of the entry points

relative to the image base when the executable file is loaded into memory. For

program images, this is the starting address.

Figure 9 Python Code Example Output 3.

CONCLUSION

In conclusion should be said that Malware static analysis technique one of the

important parts of fighting the malware. Malware is causing a critical threat to

the world. This topic was created to teach a basic technique of analyzing the

malware using the simple tools and Python scripting that allow Malware

analysis to automate the work experience.

ACKNOWLEDGMENT

The authors would like to thank their teacher and mentor Maryam Var Naseri.

REFERENCES

Carrera, E. (2019, May 20). PEFILE git hub. Git Hub:

https://github.com/erocarrera/pefile

Microsoft. (2018, 05 12). IMAGE_FILE_HEADER structure. Microsoft:

https://docs.microsoft.com/en-us/windows/desktop/api/winnt/ns-winnt-

_image_file_header

Microsoft. (2018, 05 12). IMAGE_NT_HEADERS32 structure. Microsoft:

https://docs.microsoft.com/en-us/windows/desktop/api/winnt/ns-winnt-

_image_nt_headers

Microsoft. (2018, 05 12). IMAGE_OPTIONAL_HEADER32 structure.

Microsoft:

https://docs.microsoft.com/en-us/windows/desktop/api/winnt/ns-winnt-

_image_optional_header

UNDERSTANDING OF PE HEADERS AND ANALYZING PE FILE PJAEE, 17 (7) (2020)

8620

Microsoft. (2019, 12 05). IMAGE_SECTION_HEADER structure. Microsoft:

https://docs.microsoft.com/en-us/windows/desktop/api/winnt/ns-winnt-

_image_section_header
Microsoft. (2019, 03 18). PE Format. Microsoft:

https://docs.microsoft.com/en-us/windows/desktop/Debug/pe-format

Pietrek, M. (2010, 06 30). Peering Inside the PE: A Tour of the Win32

Portable Executable File Format. Microsoft:

https://docs.microsoft.com/en-us/previous-

versions/ms809762(v=msdn.10)#IMAGE_EXPORT_DIRECTORY

