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ABSTRACT 

Fluctuations of stock market depends primarily on fundamental and technical factors and is 

based on the risk and return factors like time, contracts, sudden fluctuations etc., involved in 

every asset and stock. By modelling and analysing the data which explains the economic 

phenomena and market trends, the risk of investment can be reduced resulting in higher 

return. This is very important because the fluctuations in the market can cause huge losses to 

the individuals as well as the economy of a country. Parametric models like Auto Regressive 

Conditional Heteroscedastic/ General Auto Regressive Conditional Heteroscedastic and Non-

Parametric smoothing techniques are applied to predict the returns and reduce the residuals. 

 

INTRODUCTION 

In the field of finance, it's fascinating to monitor price behaviour frequently 

to realize the possible behaviour of the prices in forthcoming days.  

Financial activities generate several new issues, economic science provides 

theoretical foundation, and statistics and arithmetic are essential tools to 

resolve the quantitative issues in finance. Stock brokers always deal with 

the risk associated with change in price. The risks are often summarized by 

the variance of the long run returns or by their association with relevant co 

variances in a very portfolio context. Predictions of future return’s 

deviations offer the up-to-date indications of risks.  

Financial Economics is a lively field that integrates finance, economics, 

chance, applied math and statistics. A vital component of it is the study of 

the expected returns and volatilities of the value dynamics of stocks and 

bonds that are directly concerning quality valuation, proprietary 

commercialism, security and portfolio management. As for investors, the 

market price of stocks provides information on performance of varied firms 

and helps economical investment choices to be created.  

ARCH (Auto Regressive Conditionally Heteroscedasticity) models 

designed to accommodate time-varying risks. The appearance of ARCH 

model has marked the last 3 decades of Financial Economics and was 

breakthrough within the means econometricians want to model and judge 

the returns and risk on assets. Nevertheless, due to their restrictive form, 

ARCH models fail to account for several empirical features, such as 

asymmetric response of volatility to rising and falling asset prices and 

postulate a deterministic relationship between the risk and past returns.   
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OBJECTIVES 

The main objective of the research is to analyse financial time series and 

model the volatilities of financial data.  For this purpose, we have collected 

the daily stock data of CIPLA Ltd for the year 2018-19 (particularly this 

year is selected because of price fluctuations in the Pharmaceutical 

Industry).  The existing GARCH model is used for the analysis purpose.  It 

is data driven approach and provides information regarding the key features 

in the data. The different stages involved in the analysis are: 

1. ARCH and GARCH model fit for the return series for a particular 

company.  

2. Estimating Volatility parameter. 

3. To determine a volatility model for the return series using non 

parametric regression. 

 

In this context appropriate MATLAB and R software are used to develop 

programsto implement the steps involved in the data analysis based on 

GARCH model approach and non-parametric smoothing techniques. 

 

To understand the price behaviour- model the volatility of stock price. 

Future price of stock is always uncertain, and it has to be described by a 

probability distribution, building up a model on this concept is a detailed 

description of how consecutive prices are determined. 

 

LITERATURE REVIEW 

There are several studies and articles which focuseson modelling the stock 

market volatility bycritically assessing the market of both developed 

anddeveloping countries. Among various models, many researcher have 

done analysis on the volatility of emerging stock markets using GARCH 

model to test its efficiency and accurateness.(Banumathy & Azhagaiah, 

2015).  

The studies related to modelling the volatility of stock market in Indian 

context are limited to the symmetric model of the market. To understand the 

feature of Indian stock market volatility, volatility model was estimated 

(Karmakar, 2005). The presence of leverage effect in Indian stock market 

has been analysed in this study which also highlighted that the estimation 

model GARCH(1,1) provided agoodestimate of market volatility forecasts. 

In another study of asymmetric volatility, it was observed that the 

conditional variance was asymmetric during the period of 14.5 years (from 

July 1990 to December 2004) (Karmakar, 2007). The study also identified 

that theEGARCH reveals a positive relation between risk and return and 

hence is an adequate model for the volatility estimation. 

The estimation model GARCH(1,1) found out to be better model than the 

ARCH for explaining the volatility clustering and mean reverting in the 

series (Goudarzi & Ramanarayanan, 2010). The study analysed the Indian 

stock market volatility by takingBSE 500 stock index as the proxy for ten 

years. For the analysis, the ARCH and GARCH model were estimated. 

Further, the Akaike Information Criterion (AIC) and Schwarz Information 
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Criterion (SIC) was used for the selection of the best model.In another 

study of (Goudarzi & Ramanarayanan, 2011), BSE 500 stock index was 

selected for modelling the volatility of stock market. This study considers 

EGARH(1,1) and TGARCH(1,1) which are non-linear asymmetric model. 

As per the selection criteria, Akaike Information Criterion (AIC), Schwarz 

Information Criterion (SIC), and Log Likelihood Criteria (LL), TGARCH 

was found to be the best fit for modelling the volatility.  

(Mittal, Arora, & Goyal, 2012) concluded that to capture symmetric and 

asymmetric effect, GARCH and PGARCH were found to be appropriate 

model by analysing the daily stock returns of 10 years (from 2000 to 2010). 

 

(Wolfgang, Helmut, & Rong, 1997) explained the features of time series 

that can be analysed using nonparametric techniques. It is appropriate to 

have a general manner for the characteristics of interest that is measured 

more accurately when the sample size goes to infinity. Nonparametric 

methods have been reviewed to estimate spectral density, conditional mean, 

higher order conditional moments or conditional densities. The study also 

describes the estimation of density with correlated data, time series 

bootstrap methods, and nonparametric trend analysis. 

There are various parametric models designed by (Abberger, 1997), in his 

study, to analyse volatility of financial market which are time series. These 

parametric methods require a known conditional distribution for the 

estimation of maximum likelihood. The analysis explains the conditional 

distribution of daily DAX returns by applying nonparametric methods. 

Kernel estimators are used for conditional quantiles which is derived from a 

kernel estimation of conditional distributions. 

For the stock market evaluation of Indian stock market, TARCH and 

PARCH model results in better forecast volatility where BSE and NSE 

returns was considered for the analysis. ARMA(1, 1), ARCH(5), and 

EGARCH were found to be appropriate model  for the foreign exchange 

market (Vijayalakshmi & Gaur, 2013). The study period was from 2000 to 

2013. Some Indian studies attempting to model volatility found that for 

capturing the symmetric effect, GARCH(1,1) was the best model. 

EGARCH and PGARCH models were found to be acceptable for leverage 

effects. The selection of the best suited and appropriate model, however, 

depends on the model included in the analysis for evaluation.  

The present study therefore used different GARCH family models and non-

parametric methods in both symmetric and asymmetric effects to capture 

the return facts and to study the most suitable model in the volatility 

estimate. 

TERMINOLOGY 

Return is defined as a time series of asset prices display a growing tendency 

in the long run. Occasionally, however, price series may switch from 

upward to downward movements and vice-versa in the short or middle run. 

For this reason, prices of the same asset sampled at different periods of time 

may exhibit unequal means. Since this feature greatly complicates statistical 

inference, it needs to be eliminated. A simple approach consists in 
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transforming the prices into returns, which empirically display more 

stationary behaviour. 

 Let us consider a financial asset with price Pt at date t that produces no 

dividends. The return over the period (t, t+H) is defined as 

      r (t, t+H) = 
𝑃𝑡+1−𝑃𝑡

𝑃𝑡
 

The return depends on time t and the horizon H. Very oftenstatistical 

analysts investigate returns at a fixed unitary horizon which in general 

display more regular patterns than the initial series of prices. 

  r (t, t+1)=
Pt+1−Pt

Pt
 

In theoretical or econometric analysis, the above formula is often replaced 

by the following approximation: Let us suppose the unitary horizon and a 

series of low- value returns: We obtain: 

r̃(𝑡, 𝑡 + 1) = 𝑙𝑜𝑔𝑃𝑡+1 − 𝑙𝑜𝑔𝑃 

 Pt+1−Pt

Pt
= r (t, t+1) 

Estimating volatility: Consider𝜎𝑛 as the volatility of a stock variable on the 

day ‘n’, as estimated at the end of day ‘n-1’. The square of the volatility𝜎𝑛
2, 

on day ‘n’ is the variance rate. Suppose the value of the stock variable at the 

end of the day ‘I’ is 𝑆𝑖, the variable 𝑢𝑖is defined as the constantly 

compounded return during day 1 (between the end of day ‘i-1’ and the end 

of day ‘i’) 

𝑢𝑖 =
𝑆𝑖

𝑆𝑖−1
 

An unbiased estimation of the variance rate/ day, 𝜎𝑛
2, using the most recent 

m observations on the 𝑢𝑖is  

𝜎𝑛
2  =  

1
𝑚−1 ∑ (𝑢𝑛−𝑖

𝑚
𝑖=1 − 𝑢)2  (1) 

where,𝑢= 
1

𝑚
∑ 𝑢𝑛−𝑖

𝑚
𝑖=1  

For calculating VAR, the formula in equation (1) can be followed as, 

1.  ui   is defined as the percentage variation in stock variable between the 

end of day ‘i-1’ and the end of day ‘i’so that  

𝑢𝑖 =
𝑆𝑖−𝑆𝑖−1

𝑆𝑖−1
                         (2) 

2.  𝑢 is expected to be zero. 

3. m-1 is substituted by m. 

The above changes make a very minor modification to the variance 

estimations, but they allow us to simplify the formula for the variance rate 

to 

𝜎𝑛
2=

1

𝑚
∑ 𝑢2

𝑛−𝑖
𝑚
𝑖=1 (3)             
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Equation (3) gives equal weight to all ui’s. The objective is to estimate the 

present level of volatility,𝜎𝑛. It therefore makesmore sensible if we give 

more weight tothe recent data. Therefore, the model is 

𝜎𝑛
2= ∑ 𝛼𝑖𝑢

2
𝑛−𝑖

𝑚
𝑖=1    (4) 

The variable 𝛼𝑖 is the quantity of weight specified to the observations‘i ' 

days ago. The′𝛼 ′values are positive. If we choose them so that   𝛼𝑖<𝛼𝑗 when 

i >j, less weight is given to older observations. The weights must be equal 

to unity, so that 

∑ 𝛼𝑖
𝑚
𝑖=1  = 1 

An additionto the knowledge in equation (4) is to pretend that there is a 

long-run average variance rate and thatmust be given some weight. Then 

the model will be written as  

𝜎𝑛
2=  𝛾𝑉𝐿 + ∑ 𝛼𝑖𝑢

2
𝑛−𝑖

𝑚
𝑖=1   (5)  

where,𝑉𝐿 is a long-run variance rate and 𝛾 is the weight assigned to 𝑉𝐿 and 

𝛾 + ∑ 𝛼𝑖
𝑚
𝑖=1 = 1 

is known as an ARCH (m) model 

The estimation of the variance is biased on a long-run average variance and 

m observations.  

 

THE GARCH (1, 1) MODEL: 

GARCH (1, 1) model is proposed by Bollerslev in 1986 is an extended 

version of the ARCH model where the variance of the disturbance at time 

‘t’ influenced by on its own lag as well as the squared disturbances. 

The difference between GARCH (1, 1) model and the Exponentially 

Weighted Moving Average (EWMA)Model is analogous to the difference 

between the equations (4) and (5). In GARCH (1, 1), 
2

t   is calculated 

from a long-run average variance rate, VL, as well as from 1−t and

1−t . The equation for the GARCH (1, 1)   is 

𝜎𝑡
2 =𝛾𝑉𝐿 + 𝛼1𝜀

2
𝑡−1 + 𝛽𝜎2

𝑡−1          (6) 

where,𝛾 is the weight assigned to VL, 1  is the weight assigned to 𝜀2
𝑡−1 

and𝛽 is the weight assigned to𝜎2
𝑡−1.  And more importantly, 𝛾+

1 + 𝛽=1 

The “(1, 1)” in GARCH (1, 1) specifies that 𝜎𝑡
2 is biased on the most recent 

observation of 𝜀𝑡
2 and most recent estimation of the variance rate. Setting 

𝛼0 = 𝛾𝑉𝐿  , the GARCH (1, 1)   model can also be written as: 

𝜎𝑡
2 = 𝛼0 + 𝛼1 ∑ 𝜀2

𝑡−1
𝑝
𝑖=1 + 𝛽𝜎2

𝑡−1       (7) 

This model is generally used for estimating the parameters. After estimating 

𝛼1 and  𝛽  , we can calculate 𝛼0 as 1- 𝛼1 - 𝛽. The long-run variance VL=
𝛼0

𝛾
 . 

For  GARCH (1, 1) process,   the sum 𝛼1 + 𝛽<1, else the weight to the 
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long-run variance is considered to be negative.The parameters of GARCH 

can be estimated using maximum likelihood estimator. 

 

 

NON PARAMETRIC REGRESSION: 

Non-parametric regression is a set of techniques used to estimate the 

regression curve without making strong assumptions about the shape of the 

true regression function. The non-parametric techniques are useful for 

model building and checking parametric form and for data description. The 

non-parametric model is of the form      𝑦 = 𝑚(𝑥) + 𝜀 

And for the ith observation   𝑦𝑖 = 𝑚(𝑥𝑖) +  𝜀i=1,2………n 

      where, y is the response variable andm (x) is the mean response of the 

regression function. 

 

The nonparametric method of estimating a regression curve has the 

following advantages: 

1. It offers a useful method of discovering a general rapport between two 

or more variables. 

2. It provides prediction of observation yet to be given without referring 

to a stable parametric model. 

3. It provides a technique for finding outliers by studying the effect of 

remote points. 

4. Nonparametric regression creates an easy method of replacing for 

missing values or interpolating between adjacent x values. 

Regression smoothing techniques are specially used to estimate the 

regression function in non-parametric methods. A regression smoother is a 

techniqueofbriefing the trend of a responsemeasurement ‘y’ as a function of 

one or more predictor measurements x. Smoothing is a kind of averaging 

the observations around the target value of the predictor variable. The 

averaging is carried out in the neighbourhood around the target value ‘x’. 

The smoothing techniques differ mainly in their method of averaging the 

values. The main and important decision to be made in any of the 

smoothing techniques is to fix the size of the neighbourhood. In this study, 

for the smoothing analysis we have used Nadaraya Watson Estimator i.e. at 

some point x, 

𝑚  ̂(𝑥) =  ∑ 𝑦𝑖

𝑛

𝑖=1

𝐾ℎ (𝑥 − 𝑥𝑖)/ ∑ 𝐾ℎ (𝑥 − 𝑥𝑖)

𝑛

𝑖=1

 

 

 

SMOOTHING RESIDUALS 

For a parametric model S Θwhich could be either linear on nonlinear in 

unknown parameter, we wish to test the hypothesis that  

H0: m ϵ SΘ = {m(. ;  θ): θ ϵ Θ}                             ( 8)   

Let  


  be consistent estimate of θ under H0 .Define the 

residual e1 ,e2 ,e3 , … … en , as  

 ei = Yi − m(xi, θ)̂,        i = 1,2, … … . n                 (9) 
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If  H0 is true, then these residuals should behave more or less like a batch of 

zero mean uncorrelated random variable. Hence when the H0 is true, a 

linear smooth ĝ  will tend to be relatively flat and cantered about zero. Plot 

)(.;ˆ sg  and see how much it differs from zero function.  A test statistic 

that more objectively measure the discrepancy of );(ˆ sxg  from zero 

function is given below.  

The statistic used to test H0  is of the form          T =
‖ g(.;S)‖2

σ̂
2                (10)

 
where, the )(.;sg  is quantity that measure the size of the function ‘g’   

and 2̂ is model free estimator of error variance σ2 . The commonly 

used estimates of  σ2  based on pseudo residuals e1i   and, e2i    , i =
1,2, … … . n  are  

σ d
2

̂ =
1

2(n − 1)
∑ e1i

2

n

i=1

 

where,e1i = Yi − Yi−1         i = 2,3, … … . . , n − 1 ,                           (11) 

and
σ  e

2
̂ =

1

n−2
∑

e2i
2

(1+ai
2+bi

2)

n−1
i=2                                                           (12) 

where,e2i =
Xi−1−Xi

Xi+1−Xi−1
Yi−1 +

Xi−Xi−1

Xi+1−Xi−1
Yi+1 − Yt           (13) 

 

                                      =aiYi−1 + biYi+1 − Yt ,     i = 2,3, … … … … n −
1            
 

where, ai and bi are the coefficients of  Yi−1 andYi+1.  

 

EMPIRICAL APPLICATION 

The objective of this study is to determine a volatility model for the return 

series using non-parametric regression. The GARCH model and non-

parametric regression models are used to develop appropriate model and the 

same is used for the study.  In recent years nonparametric methods of curve 

estimation are used to develop appropriate model for the phenomenon 

under study. It is a data driven approach and provides information regarding 

the key features in the data. We have explored the use of non-parametric 

smoothing techniques for the empirical study. 

In this context appropriate MATLAB programs are developed to implement 

the steps involved in the GARCH model approach and non-parametric 

regression approach.  The two approaches are compared to obtain the best 

fit. 

Stock Market daily data of Cipla Ltd for the year of one year starting from 

1
st

 Jan 2018 to 13th March 2019 have been used (particularly this year is 

selected because of price fluctuations in the stock market) as a variable for 

the study. The data has been tested using GARCH and Non-Parametric 

smoothing techniques.  The problem of testing ARCH and GARCH effect 

and fitting the model is considered. In nonparametric smoothing method, 

the problem of estimation of non-parametric smoothing curve is carried out. 

To see the appropriateness comparing the residual sum of square with the 

existing model, testing the goodness of fit for the model have been used for 

the study.     
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Figure 1. Plotting original return series 

The graph shows that there is trend component in the time series data. This 

indicates that the series is non stationary.  As evidence we plot the ACF 

curve to support the claim. 

 
Figure 2. Plotting Correlogram for original return series 

Here all autocorrelation curves lie outside the 2𝜎 limits.  Autocorrelations 

for the original series shows that the series is non stationary.  Non stationary 

is removed by differencing the series twice. Correlogram for the differenced 

series is given below where most of the spikes are within 2𝜎 limits, which 

signifies that the differenced series is stationary. 

 

 
Figure 3. Plotting Correlogram for differenced return series 
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Empirical evaluation of ARCH and GARCH models: 

Since GARCH is Generalized ARCH, existence ARCH implies the 

existence of GARCH effect. If H0 is rejected then using GARCH model is 

justified, else GARCH model cannot be used. If null hypothesis is rejected 

it implies the existence of the GARCH effect. Therefore, the presence of 

GARCH effect is tested by defining the hypothesis, 

H0: No ARCH effect exists. 

H1:  ARCH effect exists. 

Special features of financial time series  

i) Absence of auto correlation in the return series. 

ii) Squared returns exhibit significant serial correlation. 

iii) The return series follow heavy-tailed distribution. 

Table 1: Representing Summary of stock price 

 

 

 
 

 

Table 2: Representing Summary of log return series 

 

 

 
Figure 4. Plotting log return series 

 

Statistic Value 

Minimum 492.1 

Maximum 672.8 

Mean 581.1 

Skewness 0,0093 

Kurtosis 1.6799 

 

Statistic Value 

Minimum -0.0753 

Maximum  0.0735 

Mean -0.0005 

Skewness  0.3939 

Kurtosis 3.8006 
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Figure5 . Plotting ACF 

 

Observation: 

We can see that all the spikes in the ACF plot of log returns falls within the 

confidence interval. It confirms the absence of the autocorrelation in the log 

return series. Further, some spikes in the squared log return series are 

outside the confidence limit which confirms the serial correlation between 

squared log returns. The computed value of kurtosis for log return series is 

3.8006 (>3). Thus, the feature of financial time series is satisfied by the data 

under study.  To proceed to fit ARCH/GARCH model we require the order 

of the process. From the ACF and PACF plots of squared return we can 

observe the one spike is outside the confidence limit (Note: Count the 

number of first significant spikes outside the 3-sigma limit, and in ACF 

the first spike is always outside because autocorrelation at lag zero is  

always=1). Thus GARCH(1,1) model may be a good guess to start. 

The functions used, the inputs taken, and the output obtained are given 

below: 

1. GARCHFIT: This function is used to fit the GARCH model. The input 

used is return series and the outputs obtained are the estimates of the 

coefficients of the GARCH model, standard error of the coefficients, least 

square fit value   innovations and sigma. 

2. ARCH test:  This function is used to test the existence of ARCH effect. 

The inputs taken here are the residual obtained from the GARCH fit, the 

vector of lags of the squared residuals included in the ARCH test statistic, 

the level of    significance of the hypothesis test is 5%.  

 

Table 3: Representing output values for Ljung Box Test in original return 

series 

 

 
1. The Boolean values, in which ‘1’ indicates the rejection of null 

hypothesis and ‘0’ indicates the acceptance of the null hypothesis    

Model Boolean Value P-Value Test Statistic Critical Value 

ARCH 1 0.0014 58.5620 3.8415 

GARCH 1 0 59.0343 31.4104 
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2. ARCH test statistic value, both the computed and the critical value of the 

chi-square distribution. 

  

Table 4: Representing Fit Summary 

 

 
3. The estimated co-efficient of GARCH model are α = 0.0998 and β 

=0.6923. Since α+β<1, the GARCH (1,1) is stationary with finite variance.    

To examine the suitability of ARCH model, ARCH test was carried out 

which gave Boolean value 1 with p-value 0.0014. Therefore, the null 

hypothesis is rejected which indicates that there exists ARCH effect. 

To examine the suitability of GARCH model, Ljung Box test was carried 

out which gave the Boolean value 1 with p-value 0. Therefore, the null 

hypothesis is rejected which indicates the existence of GARCH effect. 

Table 5: Representing Residual Analysis 

 

 
 

 

 

 

 

 Estimate Std. Error t-Value Pr( > 𝑡  ) 

Mu 1.960e-04    9.057e-04     0.216    0.8286 

Omega 5.536e-05    2.921e-05     1.895    0.0581 

Alpha 1 9.988e-02    4.800e-02     2.081    0.0374 * 

Beta 1 6.923e-01    1.289e-01     5.371 7.83e-08 *** 

 

   Statistic P- Value 

Jarque-Bera Test R    Chi^2   171.2063 0 

Shapiro-Wilk Test R    W 0.9392                       1.179569e-09 

Ljung-Box Test            R    Q(10) 7.1107 0.7149    

Ljung-Box Test            R    Q(15) 11.0814 0.7468    

Ljung-Box Test            R    Q(20)                   15.9181                       0.7217    

Ljung-Box Test            R^2                     Q(10)                      5.9687                       0.8179 

Ljung-Box Test            R^2                     Q(15) 7.6402                       0.9374     

Ljung-Box Test            R^2                     Q(20) 9.8324                       0.9711 

LM Arch Test            R    TR^2 6.1212                       0.9098 
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Figure 6.Plotting Residuals of the fitted model 

Observation:  

Here the residuals are uncorrelated. There is no ARCH effect left in the 

residual series (LM test p-value:0.9098>0.05, accept the null hypothesis 

H1: No ARCH effect). Also, qq plot shows that residuals not follow normal 

distribution (Not a strong assumption). The mean of residual is -0.0006 and 

variance is 0.0002. Thus, we can say that residuals follow a white noise 

process (iid random variables with zero mean and constant variance and are 

uncorrelated).  

So the fitted model for Cipla Ltd for the period from 01 January 2018 to 13 

March 2019 is 𝒚𝒕 = 𝝈𝒕𝜺𝒕  ,    𝝈𝒕
𝟐 = 𝟎. 𝟎𝟗𝟗𝟖𝒚𝒕−𝟏

𝟐 + 𝟎.𝟔𝟗𝟐𝟑𝝈𝒕−𝟏
𝟐  

 

Empirical evaluation of the data using graphs: 

 
 

 

 

Fig 6: Plotting original return series and estimated values from GARCH fit 
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Fig 7: Plotting original return series and local average smoothing values 

 
 

 

 

. Fig 8: Plotting residuals from local average smoothing and GARCH model 

 
 

 

 

Fig 9: Plotting original return series and the residuals 

 
Fig 10: Plotting residuals from local average smoothing, GARCH model 

and original return series 
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To examine the appropriateness of the estimated curve, lack of fit test is 

considered, and   the test statistic obtained is T=0.598290<1.  This implies 

that the non-parametric model is considerably good fit for the data. 

Values of Residuals sum of squares of parametric and non-parametric 

techniques  

 

By comparing the residual sum of squares, the computed results show that 

non parametric smoothing approach gives less residual sum of squares 

compared to GARCH, therefore nonparametric smoothing approach is a 

better fit compared to GARCH model for financial data.   

 

CONCLUSION 

1. The same techniques and test procedures are applied for other listed 

companies in the Indian Stock Market.  An approach was proposed for the 

testing of volatility using non parametric regression method.  Model for 

volatility was estimated using Kernel Smoothing and compared it with the 

GARCH model.  

2. To examine the suitability of ARCH model, ARCH test was carried out 

which gave Boolean value 1 with p-value 0.0014. Therefore,we reject the 

null hypothesis and conclude that there exists ARCH effect. 

3. It is observed that in most of the cases Non Parametric model is a good 

fit for financial data when compared with the existing GARCH model. 

4. To verify the appropriateness, the models can be applied for the 

generated return series using simulation procedure.  
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