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ABSTRACT 
 

The uniform steady slow viscous flow of an incompressible non-Newtonian second order 

fluid past a fixed sphere of Reiner-Rivlin fluid with constant coefficient of Newtonian-viscosities 

 and 
e 

n , elastico-viscosity e , and cross-viscosities    and 
e i 

at very small Reynolds number 

has been delineated and discussed under the Stokes' approximation. In the present model, no- 

slip(slide) is assumed on the boundary of the fluid sphere's surface so as to satisfy continuity of 

shear across the surface. The unequivocal articulations for the stream functions are obtained to the 

second order in the small cross-viscous parameters Se and Si characterizing, respectively, the 

cross-viscosities of external and internal fluids, and special cases of flow past a solid and different 

fluid spheres are deduced then. The effects of forces exerted by external fluid in the flow on the 

streamlines and the drag on the fluid sphere have been investigated and also represented 

graphically. The effects of elastico-viscous parameter  T on drag and different fluid parameters  

have also been studied. 

1. Introduction 

The steady translation of a axisymmetric particle, especially, spherical particle in a continuum 

hydrodynamics is an important problem in classical and fundamental fluid mechanics for the purpose of 

theoretical, computational and modeling point of views. Also, such hydrodynamics problems are base for the 

study and investigation of many physical, industrial, real-world applications. It was Stokes(1851) who 
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initially solved the problem known as "falling-ball" for creeping viscous flow streaming over a sphere by 

undermining the inertia terms in comparison to viscous terms in the equation of motion. Further, Stokes 

calculated its terminal velocity by deriving analytical solution for both the fields, pressure and velocity. 

 

In recent past, attempts have been made to clarify various non-theoretical outcomes in other than 

Newtonian liquids by the insertion of second order terms in the constitutive equation. But the governing 

equations of non-Newtonian fluid motions  are harder  than the Navier-Stokes' equations  of motion and  

have rarely been unraveled except couple of cases. It appears to be practically difficult to acquire the 

solution of such equations in general solution when the motion is explained in 3-dimension. Also, when 

surrounding fluid has non-linear properties like cross-viscous, elastico-viscous, the situation becomes more 

complex as the flow governing equations are dominantly non-linear in nature. As such, it is impractical to 

use Stokes' method of linearization to study the effects of cross-viscosity in non-Newtonian fluids but only 

approximately either through a perturbation technique or numerical approach. There are ample examples 

available in literature for the problems of steady translation of spherical solid particle translating in an 

infinite expanse of  fluid  with uniform velocity. For decades, this unique problem has been a bench mark  

for researchers to evolve innumerable novel numerical techniques The problems of slow viscous motion of 

non-Newtonian fluids past a sphere is of much practical importance and is pretty useful in tribology, bio-

fluid mechanics and petro-chemical industries like lubrication of bearings, lubrication of hip joints by means 

of synovial fluids etc. Jain (1955) acquired the solution for the slow flow of a non-Newtonian fluid by 

utilizing 'Synthetic Method'. Later, the same problem was revisited  by Rathna (1962)  using Stokes' 

approximation and expanding the stream function in powers of cross-viscous parameter S and analyzed that 

the drag experienced by a non-Newtonian liquid  is equivalent to the Newtonian fluid with the same 

kinematical viscosity. But when the expansion is restricted to the second order, drag on the sphere was 

experienced higher as compared Newtonian fluid. A very identical approach was adopted earlier by 

Leslie(1961) to research the identical issue but for an Oldroyd visco-elastic fluid. Sharma (1979) examined 

the slow motion of a non-Newtonian second order fluid past a sphere. By means of a variational principle by 

Bird, Foster and Slattery(1963) found an approximate  solution for creeping flow past a Reiner-Rivlin liquid 

sphere and applied variational principle to determine the drag coefficient. Rajagopal(1984) has discussed 

necessary and sufficient condition for the existence of solution under Stokes flow for second-order fluid. 

Saroa and Choudhury(1984) reinvestigated the problem by Rajagopal using the method of Blasius with the 

steady boundary layer flow 
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Ramkissoon (1989b) solved the problem of slow flow of a Reiner-Rivlin liquid over a fluid sphere and 

inferred that sphere encounters more drag than classical fluid. Ramkissoon and Rahaman (2001) examined 

slow flow of a Reiner-Rivlin fluid in a fluid contained in solid spherical container. Ramkissoon (1999) 

examined the uniform flow of a polar fluid past a Reiner-Rivlin fluid sphere utilizing Stokes' estimate and 

determined drag experienced by the fluid sphere. Sahoo (2012) adopted a second order FDM to solve the 

steady B𝑜 dewadt flow of Reiner-Rivlin fluid and found that cross-viscous term decreases the radial 

velocity at significant distance from rotating disk. Recently, the problem of second-order fluid flow was 

studied applying magnetic field over torsionally oscillating disc by Agrawal and Agrawal (2016) 

The prime goal for the present work is to look for how elastico-viscosity and cross-viscosity affects the 

flow phenomenon around a Reiner-Rivlin spherical fluid particle. The flow is considered to be uniform,  

slow viscous and steady. Although for Newtonian and some non-Newtonian fluid like micropolar fluid, 

couple stress fluid, etc. an exact solution is available in the literature, for a second-order fluid streaming  

over Reiner-Rivlin fluid under Stokesian approach this problem has not yet been studied earlier before. 

Present work is an extension of work by Sharma(1979) who considered rigid sphere instead fluid sphere. 

2. Formulation of the Problem 

A fluid sphere, having radius a of Reiner-Rivlin fluid whose rheological equation as suggested by 

Reiner (1945) is 
 

Tij  Pin ij  2n Dij  4c Dik Dkj , 
i i 

(1) 

has been placed in a uniform stream of velocity U of a non-Newtonian second-order fluid whose  

constitutive equation as suggested by Coleman and Noll(1960) is given by 
 

Tij  Pex ij  2n Dij  2ev Eij  4c Dil Dlj , 
e e (2) 

where 

D    
1 U U  and E    

1 a  a  U U , 
ij 

2 
i, j j,i ij 

2 
i, j j,i k ,i k , j 

 
(3) 

Tij is stress tensor, Pex and Pin are respectively the hydrodynamic pressures for external and internal flow 

fields, Ui and ai are velocity and acceleration vectors respectively, ne
 and ni 

are the Newtonian 

viscosities of external and internal fluids respectively, ce
 and ci 

are, respectively, the cross-viscosities of 

external and internal fluids, and ev is the elastico-viscosity of external fluid. 

 

For an incompressible fluid of density , 

fields are, respectively, given by 

the flow governing equations in steady state for both the flow 

 

Tij, j   Uk Ui,k , (4) 

Uk ,k  0, (5) 
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where     represents the density of respective fluids. 

We have utilized spherical polar co-ordinates (R, ,) 

 
 

having the origin at the centre of the fluid sphere 

and   0 and    are in the upstream and downward directions respectively(see Fig.1). Since the flow 

considered is axisymmetric (  0) in nature, so the parameters pertaining to flow fields are free from  . 

Let UR and U be velocity components along radial and transverse (  radius of vector) directions 

respectively. 
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Hence, we can take velocity vector as 

U (R, )  UR êR  U  ê   (UR ,U  , 0) . (6) 

Now, to reduce the equations and quantities in non-dimensional form, utilizing the following 

transformations: 

 

 

 

 

 

Figure 1. Physical delineation of non-Newtonian second order fluid model and coordinate 

system 
 

 

r  
R 

,  v   
UR  , v    

U  ,      
  

, p  
P 


a 

r 
U  U Ua2 U / a 



T D E        
t         

ij     
, d         

ij     
,  e          

ij       
,      

ne    ,  
 

ij         
U / a     

ij        
U / a     

ij        
U 2  / a2  ni 

 

 
(7) 

where r, vr , v ,  , p, tij , eij , dij , .... stand for non-dimensional quantities,  is relative viscosity, and a 

is radius of sphere and U is uniform velocity of external flow field. 
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e 

Using non-dimensional quantities, Ramkissoon(1989a) has shown that the constitutive Eqs. (1) turns out to 

be in the components form as follows: 

t   p  2 d  4S (d 
2  
 d 

2  
), 

rr rr i rr r 



t    p  2 d   4S (d 
2   
 d 

2  
),

i r      




t    p  2 d   4S d 
2  

, i     

t  2 d  4S  d d  . 
r r i     r     

 

 
(8) 

 
While by Sharma(1979), the constitutive Eqs. (2) take the components form as follows: 

 

t   p  2 d    2T e  4S (d 
2  
 d 

2  
),  

rr rr rr e rr r 



t    p  2 d   2T e   4S (d 
2   
 d 

2  
),

e r      




t    p  2 d   2T e   4S d 
2  

, e     

t  2 d  2T e     4S  d d  . 
r r r e     r     

 

 
(9) 

 
Whereas for both the regions, the momentum Eqs.(4) in terms of non-dimensional quantities yield the 

followings: 

 

 

 

 

 

 

 

 

here Si ( c U / n a), Se ( c U / n a) denote the cross-viscous parameters for internal and external 
i i 

fluids respectively, and 

e e 

T ( eU / n  a) is elastico-viscous parameter for external fluid with 

Re( aU  / n  or aU  / n ) Reynolds numbers. 
i e 

 

Now, due to axial symmetry, the velocity components of fluid flow in both the regions satisfying Eq.(12) 

can be expressed in terms of stream function  such that 

v  
    1  

,   v  
    1  

.
 

r 
r

2 
sin  

 
r sin r 

 
(13) 

 
3. Validity of the Solution 

The following assumptions have been taken into account for the sake of obtaining the valid solutions of Eqs. 

(10) and (11) 
Re  Se , Si , T   1 or a     ,   U  a / and   a     , 

2 2 

e ne ce ci (14) 
 

where  c ,  c ,  n and  e are kinematic viscosities of different fluids. Above conditions restrict the flow 
i e i 

phenomenon like radius of the sphere, free-flow velocity, etc. and permit the neglect of inertia terms in 

t  r1 t  r1( 2t   t  t  t  cot )  Re v v  r1v  v  r1v2 , 
rr, r r ,  rr   r r    r , r     r ,  

 

(10) 

t  r1 t  3r1t  r1(t  t ) cot  Re v v  r1v  v  r1v v , 
r , r  ,  r   r     , r      , r 

 

(11) 

and the continuity Eqs.(5) are given by 
1     

(r2v )  
1  

(v sin )  0, 
r2 r r r sin  




 

(12) 
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e e 

n c 

e e e e e e 

comparison of viscous, cross-viscous and elastico-viscous terms as the motion is creeping in the sense of 

Stokes' approximation i.e. Re  0 . Hence, Eqs. (10) and (11) now concede 

t  r1 t  r1( 2t   t  t  t cot )  0, 
rr, r r ,  rr   r (15) 

t  r1 t  3r1t  r1 (t  t ) cot  0. 
r , r  ,  r   (16) 

 

4. Statement and Solution of the Problem 

We shall now explore the creeping steady flow of a non-Newtonian second order liquid streaming over a 

Reiner-Rivlin fluid sphere of radius r  1. Also, assuming that the sphere is macroscopically at rest while 

the external fluid streams past it with uniform velocity U in the negative direction of the z  axis in the 

absence of body forces and couples. Our ace motto is to find out drag on fluid sphere. Here, two fluid 
motions- external motion of second order fluid whose viscosity, elastico-viscosity and cross-viscosity to be 

designated by  ( n  , e , c   ), and that of   internal motion of   Reiner-Rivin fluid with viscosity   and cross- 

viscosity   to be symbolized by  (   ,   ) . We distinguish between the separate fluid motions occurring 
i i 

outside and inside of the sphere by tagging on the subscripts ‘‘e’’ and ‘‘i’’, respectively. 

 

Considering Se and Si small enough, we assume the following expressions for the quantities 

 , vr , v ,trr ,tr ,..., drr , dr ,....., err , er ,....., and p : 
 

    
(0)  
 S   

(1)  
 S 

2  
 

(2)  
 ...,

e e e e e e 



    
(0)  
 S   

(1)  
 S 

2  
 

(2) 
 ..., 

i i i i i i 

 

(17) 

where  (0),  (1),  (2),...and  (0),  (1),  (2),...can be regarded, respectively, as zeroth, first, second,...,  

appro- -ximations for external and internal fluid quantities as mentioned above. Also, 

viscous parameters of external and internal fluids, respectively. 

Se and Si are cross- 

In case of creeping viscous flow past a solid sphere of radius R  a (i.e. r 1) , it has already been proved 

by Sharma (1979) that if Eq.(17) is considered, then for external motion the stream function up to second 

order approximation in Se yields the followings: 

 (0)   
 

r2  
3 

r 
 1   

I  , 



e  
2 2 r 

  2 
  

 1 
3 


  (1)  21   I  , 


e 3 

 r  

  (2)    2 f (r) I     4 f  (r)I 2     
e 1 2 2 2 

 2  2g (r)I     4g  (r)I    I   
1 3 2 2 3 

 

 

 
 

(18) 

where   
3 

(1  ) ,   T / S 
8 

e and 

 
f (r)  7 

132 r  
3469 

 
51975 

 
1413 

 
95040 

log r  
40425 

 
9075 

 
2275 

,
 

 
        

1 
80850 


 r r

2 
r

3 
r

3
 r4 r5 

r
7 

 
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 

  . 


 f (r)  3  46 
 

616 
 

52 
 

1056 
log r  

462 
 

77 
 

21 
,
 

 
        

2 
308 


 r r 

2 
r

3 
r

3
 r 4 r5 

r
7 

 

g (r)  
 

36650.49  
55753.97 

 
4
 

 
 

 
1607.54 

 
21.46 

 
9.51 

log r  
17408.89 

 
30.13 

 
46.42 

 
6.96  

,
 

 
       

1  
r2 

 

r3 r4 r5 r5 r6 r7 

r8 r9 

 g (r)  91.27 9 229.45 3.93 51.6 
 

     

210.96 177.03 72.23 10.58 


2   


 
r2 r3 


r 4 r 4 

log r  
r5 


r6 r7 

r8 r9 



Particular solutions of  e for external motion given by Eq.(18) vanish on sphere's surface at r  1, and 

 e  r2I2 ( ) 

that 

as r approaches to (i.e. r  ). Furthermore, we also make a note of the followings 

 

𝑓1 1 = 𝑓2 1 = 𝑔1 1 = 𝑔2 1 = 0 

and 𝑓1 𝑟 , 𝑓2 𝑟 , 𝑔1 𝑟 , 𝑔2 𝑟 → 0 as 𝑟 → ∞. 

 

(19) 

 

Similarly, It has already been shown by Ramkissoon (1989a) that if Eq.(17) is considered, then for internal 

motion of Reiner-Rivlin fluid within the liquid sphere the stream function up to second order approximation 

in Si yields the followings: 

 (0)   2 r 4   r 2  I    ,  



i 2 

   
4 

  



(1) r5 I , 


i 

21 
3 


 (2)    

4  
r6 I   . 




i 
63 

2 

 

 
 

(20) 

In case of same second-order fluid past a liquid sphere, we can opt the external stream function  e 

following given form 

in the 

 


  (0) 
 S  (1) 

 S 
2  (2) 

  A r
n1 

 B r
n3  I ( ), 

e e e e e e n n n 
n2 

(21) 

where   cos and In ( ) are Gegenbauer functions. In particulars, the following identities in accordance 

with Legendre polynomials could be easily obtained [Happel and Brenner (1965)] 

I     
1 

(1  2 ), I    
1 
 (1  2 ), 




2 
2 

3 
2 

1 1 



I     (1 2 )(5 2 1), I      (1 2 )(7 2  3), 



4 
8 

5 
8 





I 2    
2 

I    
2 

I  , I   I    
2 

I    
2 

I  . 
2 

5   
2 

5   
4 2 3 

7  
3 

7  
5 




 

 
 

(22) 

Utilizing the above cited relations (22) and stream function approximations (18), one can write stream 

function  e , up to second order in Se , for external motion illustrated by (21) as 
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i i i 

 

 3 1   1 
3

 

     r
2  
 r   I     2S  1   I     S 

2  

2 f (r) I     4 f  (r)I 

2  e 2 e 3 e 1 2 2 2 

 2 2 r   r 


2 2g (r)I     4g  (r)I    I      A  r
n1  

 B  r
n3  I  ( ). 

1 3 2 2 3 n n n 
n2 

 

 
(23) 

 

Which, after a bit simplification, cedes the following 

  

r 2  

 
B  

3  
r  

 
A 

 1  1 
 

1 
S 2 10 f (r)  8 f (r)

 
I   

e    2 
2 
   2 

2 
 

r 5 
e 1 2  2 

     
  1 

3 

1 A 
 2S  1    2S 2 14g (r)  8g (r)  3  B  I   e e 1 2 2 3 3 

  r  7 r 

 

 

8 
S 2 f (r)  

A4  
B4 
 

I    

 

8 
2S 2 g (r)  

A5  
B5 
 

I   
   

5 
e    2 

r3 r  
  4    

7 
e    2 

r 4 r 2  5 

   


  A r 
n1 

 B r 
n3  I ( ). 

n n n 
n6 

 

 

 

 

 
(24) 

 

Also, it follows from the outcomes obtained by the authors Ramkissoon (1989a), Jaiswal and Gupta (2014a, 
2014b, 2015), and later by Jaiswal (2017) that for internal motion within a Reiner-Rivlin liquid sphere, 

therefore the stream function  i 
can be taken as given below 

 



  (0) 
 S  (1) 

 S 
2  (2) 

 C r
n 
 D r

n2  I ( ), 
i i i i i i n n n 

n2 

(25) 

where  (0) 
,  (1) 

,  (2)
 are given by (20). Inserting these values in (25) we acquire, up to the second order 

approximation, the following expression for stream function 

  


(C  2)r2  (D  2)r4  
4 

S 2r6  
I   

i  2 2 
63  

i  2 

 

 
 

r3  4   5   
n n2 

C3   D3   Si   r   I3    Cn  r    Dn  r  In ( ). 
  21   n4 

 
 

(26) 

 
 

5. Boundary conditions and determination of arbitrary constants 

Anonymous  coefficients  emerging  in  (24) and (26) must be extricated from the following boundary 

conditions: 
 

A. Vanishing of normal at the interface needs that 
 

 e  0 on r  1, (27) 

 i  0 on r  1. (28) 

 
B. Continuity of shear velocity across the interface requires that 
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e i 

 

 e    
 r on r  1, 

r r 
(29) 

 

C. Continuity of  shear stress is at the interface, i.e., tr     tr    on  r  1 that yields 

 

 
  1  e   

  1  i  on r  1,
 

    

r 
 

r
2   
r  

 
r 

 
r

2    
r 




   

 

(30) 

where   n   / n . 
e i 

 

D. Finally, we have 
  r2 I   as r  . 

e 2 
(31) 

 
The above stated boundary conditions lead, respectively, to the following set of non-homogeneous system of 

algebraic equations: 
 

 
An   Bn  0 for  n  2, Cn  Dn  0 for  n  4, 

4 2 4 



C2   D2   Si  , C3   D3   Si , 
63 21 

 A   B   2C  4D   4 
 8 

S 2, 



2 2 2 
21  

i 


2 A  3C   5D   
20 

S 1.122 S 2 ,  3A   B   4C    6D  0, 



3 3 3 
21  

i e 4 4 4 4 


4 A5   2B5  5C5  7D5  1.122 S 2 , 
e 




(n 1) An   (n  3)Bn  nCn  (n  2)Dn   0 for  n  6, 

4 A   2 B   2Z   4W   3 12   
2  

S 2  
8 

S 2 , 



2 2 2 2 
175 

e 
7  

i 



10 A3  10D3  867167.542 S 2 1.9048Si , 


e 

18 A   4B   4C  18D    
12 

S 2 , 



4 4 4 4 
385 

e 


28 A5  10 B5 10C5  28D5  640.242 S 2 , 
e 




(n 1)(n  2) An   n(n  3)Bn  (n  3)nCn  (n 1)(2  n)Dn   0 for  n  6.


 

 

 

 

 

 

 

 

 

(32) 

 

where   n / n . Solving above system of non-homogeneous equations yields 
e i 
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0.00190476(262.5 1S 2  44.44S 2 ) 
A2    B2  e i     , 

1.   

0.0634921(31.5 23.625  0.03S 2  2.33S 2 1S 2 ) 

C2 
e i i     , 


1.1. 

0.1269841(15.75 11.8125  0.015S 2 1.67S 2  S 2 ) 
D2   e i i     , 

1. 1 
86716.75(6.4578106 2 S 2  2 S 2  4.39307 1011 S ) 

A3    B3  e e i   ,
1.1. 

86717.3(2 S 2  4.39304 1011 S  6.4008011023 S ) 



C3  e i i   , 


1.1. 

86717.3(2 S 2  2.19656 106 S  2.19652106 S ) 



D3  
e i i   , 

1.1. 


0.00222635S 2 
A4    B4   C4   D4 

e  , 
1  




35.5689(0.0157442 S 2 12 S 2 ) 
A5    B5  e e    , 
11 

35.00892S 2 
C5   D5  e  , 

1  

An   0  Bn   Cn   Dn   0 for  n  6. 

 

 

 

 

 

 

 

 

 

 

 
 

(33) 

 
 

6. Evaluation of drag force and some limiting cases 

The most significant feature of the present flow problem is to evaluate hydrodynamic resisting force exerted 

on the Reiner-Rivin fluid sphere due to the flow of second-order fluid which can be attained by  means of  

the formula [Payne and Pell(1960)] 

 
 

where  R,  is the stream function corresponding to the fluid motion at infinity. The non- 

dimentional forms of both e R,  and  R, , respectively, are given by 

F    8  lim 
e R,    R,  

,
 

D ne  R 2R I R, 
2 

 
(34) 
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  R,    UR2I2  , 

  R,  
 R 2  1  a  3  R 1   R   R  

Ua2      A2     B2    S 2 10 f1    8 f2   I2   
 

a   2  R  2  a 5 
e  
  a   a  

  a 3 1   R   R    a 2 
 2Se 1    2S 2 14g1    8g2    A3    B3  I3   
  R  7 

e  
  a   a    R  

   8  R   a 2 a 
  S 2 f  A  B  I   

   
5 

e    2  
a 
 4  

R 
 4  

R   
4 

   
   8  R   a 4  a 2  

  2S 2 g  A  B  I  . 

   
7 

e     2  
a 
 5  

R 
 5  

R 
  
  

5 




      

 

 

 

 

 

 

 
 

(35) 

 

By implanting the expressions of e R,  and  R,  from Eq.(35) into the Eq.(34), we obtain 
 

FD  8  n aU (0.75  0.5B2  0.0114286S 2 ), 
e e (36) 

After inserting the value of B2 from Eq.(33), one can get the required expression for drag as follows 
 

 
8   aU 

F   ne {0.75  0.5  (0.0114286 0.012381)S 2  0.042328S 2}. 
D 

1  
e i 

(37) 

 

Some limiting cases: 
 

(a). When cross-viscous parameter Se  0 : 

In this case second-order fluid becomes a Newtonian fluid and drag obtained is 

2aU 
 

9 6  
32 

S 2 
 


 
63 

i  ne 

F     
  

. 
D 

3(1 ) 

 
(38) 

Which agrees pretty well with the result obtained by Ramkissoon(1989). 

 
 

(b). When cross-viscous parameters for external and internal fluids i.e. Se  0, Si  0 : 

6 a U 

1 

2 
 
 


 
3 

 ne 

F     
  

. 
D 

1 

 
(39) 

Again agrees good with the result obtained by Happel and Brenner(1965). 
 

(c). When elastico-viscous parameter T  0 : 
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
1 

2 
 




F    6 a   U 
3  

 0.0057  0.0062  
S 2  

0.0564 
S 2 .

 
D ne 

 
1  

 
1  

  e 
1  i 




   
 

 

(40) 

This is very new result reported here for Reiner-Rivlin fluid dominating both the flow fields. 
 
 

7. Discussions 

The non-dimensional drag coefficient 

 

DN is defined as the ratio of obtained drag force FD 

 

 
exerted on 

Reiner-Rivlin fluid sphere to the drag force on a solid sphere which is a suitable approach in an unbounded 

expanse of fluid. 

D  
FD

 
N 

6 aU 
ne 

 
4 

{0.75  0.5  (0.0114286 0.012381)S 2  0.042328S 2}. 
3(1 ) e 

i

 

 

 

 
(41) 
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Figure 2. Variation of DN with Si forT  0.0086,   0.75and various Se. 

The alteration in non-dimensional drag DN w.r.t. different fluid parameters is shown graphically in 

Figures 2,3, 4 and 5. 
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Figure 3. Variation of DN with Se forT  0.0086, Si  0.75 and various . 
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Figure 5. Variation of DN withT for Se  0.5,   0.75and various Si . 

 

The alteration in DN is plotted for various values of λ in Figure 3. It is observed that, at a fixed Se 

, as viscosity ratio λ increases, drag decreases. It is due to the elastico-viscous effect on second- 

order fluid. The Figure 4 illustrates the drag coefficient DN against relative viscosity λ. It shows  

that drag DN decreases with decreasing value of T and λ which exhibits that liquid sphere 

experiences less drag as compared with solid case. It is depicted through the Figure 5 that keeping 

the remaining parameters unchanged, DN is reported to be decreasing w.r.t. elastico-viscous. But 

this decrease in DN is less for T  as compared the increase in DN  for  increasing Si . Further, one  

can easily notice that drag DN is less for Newtonian fluid sphere over Reiner-Rivlin fluid sphere. 

 
8. Conclusions 

The ace purpose pursued in this work is to investigate the flow of second-order fluid past a Reiner- 

Rivlin fluid sphere under the Stokes' approximation. Both the flow fields have been obtained in the 

form of stream functions expressing in a power series of Se and Si. Expression for the drag force 

evaluated in an analytical fashion yielding some renowned, novel and fruitful results as limiting 

cases validated with the past similar outcomes. The impact of numerous parameters such as 

Reynolds number Re, cross-viscous parameters Se and Si, elastico-viscous parameter T and relative 

viscosity λ on the flow is discussed and found to have a sturdy effect on the flow characteristics. 

The drag experienced on the sphere is examined. Furthermore, it is worth noticing that the external 

characteristics like cross-viscosity and elastico-viscosity diminish and internal cross-viscosity 

enhances the drag exerted on the implanted fluid sphere. 
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