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ABSTRACT 

The  uniform steady slow  viscous flow of an incompressible non-Newtonian second 

order fluid past a fixed sphere of Reiner-Rivlin fluid with constant coefficient of Newtonian-

viscosities en and in , elastico-viscosity e , and cross-viscosities ec and ic  at  very small 

Reynolds  number has been delineated and   discussed under the  Stokes' approximation.   In the 

present model, no-slip(slide) is assumed on the boundary of the fluid  sphere's surface  so as to 

satisfy continuity of shear  across the surface. The unequivocal articulations for the stream 

functions are obtained to the second  order in the small cross-viscous parameters eS
and iS

 

characterizing, respectively, the cross-viscosities  of  external and internal fluids, and special 

cases of flow past a solid and different fluid  spheres are deduced then. The effects of forces 

exerted by external fluid in the flow on the streamlines and the drag on the fluid sphere have 

been investigated and also represented graphically.  The effects of elastico-viscous parameter T

on drag and different fluid parameters have also been studied. 
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1. Introduction 

The steady  translation of   a  axisymmetric particle, especially,  spherical 

particle  in a  continuum hydrodynamics is an important problem in  classical 

and  fundamental fluid mechanics for the purpose of theoretical, computational 

and modeling point of views. Also, such hydrodynamics problems are base for 

the study and investigation of many physical, industrial, real-world  

applications.   It was Stokes(1851) who initially solved the problem  known as 

"falling-ball"  for  creeping viscous flow streaming over a sphere by 

undermining the inertia terms in comparison to viscous terms in the equation of 

motion. Further, Stokes calculated its terminal velocity by deriving analytical 

solution for  both the fields,  pressure and velocity. 

In recent past,  attempts have been made to clarify various  non-theoretical 

outcomes in other than Newtonian liquids by the insertion of second order 

terms in the constitutive equation. But the  governing equations  of non-

Newtonian  fluid  motions  are harder  than the Navier-Stokes' equations  of 

motion and have  rarely been unraveled  except couple of cases.  It appears to 

be practically difficult to acquire  the solution  of such equations in general  

solution when the motion is explained  in 3-dimension. Also,  when 

surrounding fluid has non-linear properties like cross-viscous, elastico-viscous,  

the situation becomes more complex as the flow governing equations  are 

dominantly non-linear in nature. As such,   it is impractical  to use Stokes' 

method of linearization to study the effects of cross-viscosity in non-

Newtonian fluids but only approximately either through a perturbation 

technique or  numerical approach. There are ample examples available in 

literature for the problems of steady translation of  spherical solid particle 

translating  in an infinite expanse of  fluid  with uniform velocity. For decades, 

this unique problem has been a bench mark  for researchers to evolve 

innumerable novel  numerical techniques. 

      The problems of slow viscous motion of  non-Newtonian fluids past a 

sphere is of much practical importance and is pretty useful in tribology, bio-

fluid mechanics and petro-chemical industries like lubrication of bearings, 

lubrication of hip joints by means of synovial fluids etc.  Jain (1955) acquired 

the solution for the slow flow of a non-Newtonian fluid by utilizing 'Synthetic 

Method'. Later, the same problem was revisited  by Rathna (1962)  using 

Stokes' approximation and expanding the stream function in powers of cross-

viscous parameter S and analyzed that  the drag  experienced by  a non-

Newtonian liquid is equivalent to  the Newtonian fluid with the same 

kinematical viscosity.  But when the expansion is restricted to  the second 

order,  drag on the sphere was experienced  higher  as compared  Newtonian 

fluid. A very identical approach was adopted earlier by Leslie(1961) to 



PJAEE, 17 (9) (2020) 

2363 

research the identical  issue  but for an Oldroyd  visco-elastic fluid. Sharma 

(1979) examined the slow motion of a non-Newtonian second order fluid past a 

sphere. By means  of a variational principle by Bird,   Foster and 

Slattery(1963)  found an approximate solution for creeping  flow past a Reiner-

Rivlin liquid sphere and applied variational principle to determine the drag 

coefficient. Rajagopal(1984) has discussed necessary and sufficient condition 

for the existence of solution  under Stokes flow for  second-order fluid. Saroa 

and Choudhury(1984)  reinvestigated the problem by Rajagopal using  the 

method of Blasius with the steady boundary layer flow 

 Ramkissoon (1989b) solved  the problem of slow flow of a Reiner-Rivlin 

liquid over a fluid sphere and inferred that sphere encounters more drag than 

classical fluid. Ramkissoon and Rahaman (2001)  examined slow flow of a 

Reiner-Rivlin fluid  in a  fluid contained in solid spherical container. 

Ramkissoon (1999) examined the uniform flow  of a polar fluid past a Reiner-

Rivlin fluid sphere utilizing Stokes' estimate and determined drag experienced 

by the fluid sphere.  Sahoo (2012)  adopted a second order FDM to solve the 

steady B�̈�dewadt  flow of  Reiner-Rivlin fluid and found that cross-viscous 

term decreases the radial velocity at significant distance from rotating disk. 

Recently, the problem of second-order fluid flow was studied  applying 

magnetic field over torsionally oscillating disc by  Agrawal and Agrawal 

(2016) 

The prime goal for the present work is to  look for how elastico-viscosity and 

cross-viscosity affects the flow phenomenon around a Reiner-Rivlin  spherical 

fluid particle. The flow is considered to be uniform, slow viscous and steady. 

Although for Newtonian and some non-Newtonian fluid like micropolar fluid, 

couple stress fluid, etc. an exact solution  is available in the literature, for a 

second-order fluid streaming over Reiner-Rivlin  fluid under  Stokesian  

approach this problem has not yet been studied earlier before. Present work is 

an extension of work by Sharma(1979) who considered rigid sphere instead 

fluid sphere. 

2.   Formulation of the  Problem 

A  fluid sphere,  having  radius a   of  Reiner-Rivlin  fluid whose rheological 

equation as suggested by Reiner (1945) is 

2 4 ,
i iij in ij n ij c ik kjT P D D D     

 
(

1

) 

has been placed in a uniform stream of velocity U  of a non-Newtonian second-

order fluid whose constitutive equation as suggested by  Coleman and 

Noll(1960) is given by  

                               (
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2 2 4 ,
e eij ex ij n ij ev ij c il ljT P D E D D       

 
2

) 

where                                
 , ,

1

2
ij i j j iD U U 

 and 

 , , , ,

1
,

2
ij i j j i k i k jE a a U U  

 

(

3

) 

ijT
is stress tensor, exP

 and inP
 are respectively the  hydrodynamic pressures 

for external and internal flow fields, iU
and ia

 are velocity and acceleration 

vectors respectively, en  and in are the Newtonian viscosities of external and 

internal fluids respectively, ec  and ic are, respectively, the cross-viscosities 

of external and internal fluids, and ev
 is the elastico-viscosity of external 

fluid.  

For an incompressible fluid of density ,  the flow governing equations in 

steady state for both the flow fields are, respectively, given by  

                               , ,ij j k i kT U U
, 

(

4

) 

                               , 0,k kU 
 

(

5

) 

where    represents the density of respective fluids. 

We have utilized spherical polar co-ordinates ( , , )R   having the origin at the 

centre of the fluid sphere and 0   and    are in the upstream and 

downward directions respectively(see Fig.1). Since the flow considered is 

axisymmetric
( 0) 

 in nature, so the parameters pertaining to flow fields are 

free  from  . Let RU
and 

U be velocity components along radial and 

transverse ( radius of vector) directions respectively. 

Hence, we can take velocity vector as 

ˆ ˆ( , ) ( , ,0)R R RR U e U e U U     U
. 

(

6

) 

Now, to reduce the equations and quantities in non-dimensional form, utilizing 

the following transformations: 
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Figure 1.   Physical delineation of non-Newtonian second order fluid model 

and coordinate system 
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(7) 

where 
, , , , , , , , ....r ij ij ijr v v p t e d 

stand for non-dimensional quantities,  is 

relative viscosity, and  a   is radius of sphere and  U  is uniform velocity of 

external flow field. 

 

Using non-dimensional quantities, Ramkissoon(1989a) has shown that  the 

constitutive Eqs. (1) turn  out to be in the components form as follows: 

                                 
2 2

2 2

2

2 4 ( ),

2 4 ( ),

2 4 ,

2 4 .

rr rr i rr r

i r

i

r r i r

t p d S d d

t p d S d d

t p d S d

t d S d d



   

  

   

    


     


    
    

(8) 

While by Sharma(1979), the constitutive Eqs. (2) take  the components form as 

follows: 
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2 2

2 2

2

2 2 4 ( ),

2 2 4 ( ),

2 2 4 ,

2 2 4 .

rr rr rr e rr r

e r

e

r r r e r

t p d T e S d d

t p d T e S d d

t p d T e S d

t d T e S d d



    

   

    

     


      


     
     

(9) 

Whereas for both the regions, the momentum Eqs.(4) in terms of  non-

dimensional quantities yield the followings: 

 1 1 1 1 2

, , , ,(2 cot ) ,rr r r rr r r r r rt r t r t t t t Re v v r v v r v                 
 

(10) 

 1 1 1 1 1

, , , ,3 ( )cot ,r r r r r rt r t r t r t t Re v v r v v r v v                    
 

(11) 

and the continuity Eqs.(5) are given by 

                                 

2

2

1 1
( ) ( sin ) 0,

sin
rr v v

r r r
 

 

 
 

   

(12) 

 

here 
( / ),

i ii c nS U a  ( / )
e ee c nS U a 

 denote the cross-viscous parameters 

for internal and external fluids respectively, and 
( / )

ee nT U a 
 is elastico-

viscous parameter for external fluid with 
( / / )

i en nRe aU or aU   

Reynolds numbers. 

 

Now,  due to axial symmetry, the velocity components of fluid flow in both the 

regions  satisfying Eq.(12) can be expressed in terms of stream function  such 

that  

                                 

2

1 1
, .

sin sin
rv v

r r r


 

  

  
 

   

(13) 

I. Validity  of the Solution  

The following assumptions have been taken into account for the sake of  

obtaining the valid solutions of Eqs. (10) and (11) 

                       
 , , 1e iRe S S T 

        or
2 , /

e ee n ca U a  
   and  

2 ,
ica 

 

(14) 

where ic , ec , in and e  are kinematic viscosities of  different fluids. Above 

conditions restrict the flow phenomenon like radius of the sphere, free-flow 

velocity, etc. and permit the neglect of inertia terms in comparison of viscous, 

cross-viscous and elastico-viscous terms  as the motion is creeping in the sense 

of Stokes' approximation i.e. Re 0 . Hence, Eqs. (10) and (11) now concede  

                                 (15) 
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1 1

, , (2 cot ) 0,rr r r rr rt r t r t t t t           
 

                                 
1 1 1

, , 3 ( )cot 0.r r rt r t r t r t t            
 

(16) 

II. Statement and Solution of the Problem 

We shall now explore  the creeping steady flow of a non-Newtonian second 

order liquid streaming over a Reiner-Rivlin fluid sphere of radius 1.r   Also, 

assuming that the sphere is macroscopically at rest while the external fluid 

streams past it with uniform velocity U in the negative direction of the z  axis 

in the absence of  body forces and couples. Our  ace motto is to find out  drag 

on fluid sphere. Here,  two fluid motions- external motion of  second order 

fluid whose viscosity,  elastico-viscosity and cross-viscosity  to be designated 

by 
( , , ),

e en e c  
and that of  internal motion of  Reiner-Rivin fluid with 

viscosity  and cross-viscosity  to be symbolized by 
( , )

i in c 
. We distinguish 

between the separate fluid motions occurring outside and inside of the sphere 

by tagging on the subscripts ‘‘e’’ and ‘‘i’’, respectively.  

Considering eS
and iS

 small enough, we assume the following expressions for 

the quantities 
, , , , ,...,r rr rv v t t 

 
, ,....., , ,.....,rr r rr rd d e e  and :p  

 

(0) (1) (2)

(0) (1) ( )2 2

2 ...,

...,

e e e e

i i

e e

i ii i

S S

S S

      

 



    




   

(

1

7

) 

where 
(0) (1) (2), , ,...e e e  

and
(0) (1) (2), , ,...e e e  

can be regarded, respectively, 

as zeroth, first, second,..., appro- -ximations for external and internal fluid 

quantities as mentioned above. Also, eS
and iS

are cross-viscous parameters of 

external and internal fluids, respectively. 

 

In case of creeping viscous flow past a solid sphere of radius ( . . 1)R a i e r  ,  

it has already been proved by Sharma (1979) that if Eq.(17) is considered, then 

for external motion the stream function up to second order approximation in 

eS
yields the followings: 
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(0) 2

2

3

(1)

3

(2) 2 2

1 2 2 2 1 3 2 2 3

3 1
,

2 2

1
2 1 ,

2 ( ) 4 ( ) 2 ( ) 4 ( )

e

e

e

r r I
r

I
r

f r I f r I g r I g r I I

 

 

      

 
   
 

 
  

 

    








  







 

(

1

8

) 

where 

3
(1 )

8
 

, 
/ eT S 

 and 

1 2 3 3 4 5 7

7 3469 51975 1413 95040 40425 9075 2275
( ) 132 log ,

80850
f r r r

r r r r r r r

 
        

 

 

2 2 3 3 4 5 7

1 2 3 4 5 5 6 7 8 9

2 2 3 4 4

3 46 616 52 1056 462 77 21
( ) log ,

308

55753.97 4 1607.54 21.46 9.51 17408.89 30.13 46.42 6.96
( ) 36650.49 log ,

91.27 9 229.45 3.93 51.6
( ) log

f r r
r r r r r r r

g r r
r r r r r r r r r

g r r
r r r r

 
       

 

 
          



     
5 6 7 8 9

210.96 177.03 72.23 10.58
.

r r r r r

 
    



 

Particular solutions of e
 for external motion given by Eq.(18) vanish on 

sphere's surface at 1,r   and 
2

2( )e r I 
 as r  approaches to ( . . ).i e r   

Furthermore, we also make a note of the followings that 

 

         𝑓1(1) = 𝑓2(1) = 𝑔1(1) = 𝑔2(1) = 0            and            𝑓1(𝑟), 𝑓2(𝑟),
𝑔1(𝑟), 𝑔2(𝑟) → 0 as 𝑟 → ∞. 

(

1

9

) 

Similarly, It has already been shown by Ramkissoon (1989a) that if Eq.(17) is 

considered, then for internal motion of Reiner-Rivlin fluid within the liquid 

sphere the stream function up to second order approximation in iS
 yields the 

followings: 

   

 

 

(0) 4 2

2

(1) 5

3

(2) 6

2

2 ,

4
,

21

4
.

63

i

i

i

r r I

r I

r I

 

 

 


















  

(20) 
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In case of same second-order fluid past a liquid sphere, we can  opt   the 

external stream function e
 in the following given form 

 

 (0) (1) 2 1 3(2)

2

( ),n n

e ee e e ne n n

n

S S A r B r I    


   



   
 

(

2

1

) 

where cos  and 
( )nI 

are Gegenbauer functions. In particulars, the 

following identities in accordance with Legendre polynomials could be easily 

obtained [Happel and Brenner (1965)] 

   

   

             

2 2

2 3

2 2 2 2

4 5

2

2 2 4 2 3 3 5

1 1
(1 ), (1 ),

2 2

1 1
(1 )(5 1), (1 )(7 3),

8 8

2 2 2 2
, .

5 5 7 7

I I

I I

I I I I I I I

    

      

      


    




      



    
  

(

2

2

) 

Utilizing the above cited relations (22) and stream function approximations 

(18), one can write stream function e
, up to second order in eS

, for external 

motion illustrated by (21) as  

        

        

3

2 2

2 3 1 2 2 2

2

1 3 2 2 3

2

1 3

2

3 1 1
2 1 2 ( ) 4 ( )

2 2

2 ( ) 4 ( () ).

e e

n n

n n n

n

e r r I I f r I f r I
r r

g r I g r I I

S S

A r B r I

    

   


   



 


  

   
         
   

  

 

(

2

3

) 

Which, after a bit simplification,  cedes the following 

   

     

 

3

2

1 2 2

2

1 2 3 2 42

2

2

3

2

2

2

2 23 4 4
3

2 5

15 5

4

2

3 1 1 1 1
( ) 8 ( ) 2 1

2 2 5

1 8
14 ( ) 8 ( ) ( )

7 5

10

8
( )

7

e e

e e

n n

e n

e

n

B A S S

A A

r r f r f r I
r r

g r g r I f r I
r r

g r

B
S B S

r

A B
S A

r
r B r

r
I

 

  

    

     
             

 


 
   

 

 
   

     


     




 

   3

6

( ).n

n

I 








 

(

2

4

) 

Also, it follows from the outcomes obtained by the authors  Ramkissoon 

(1989a), Jaiswal and Gupta (2014a, 2014b, 2015), and later by Jaiswal (2017) 

that  for internal motion within a Reiner-Rivlin liquid sphere, therefore the   

stream function i
 can be taken as given below 
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 (0) (1) (2)2 2

2

( ),i i i i

n n

i i n n n

n

S S C r D r I    






    
 

(

2

5

) 

where 
(0) (1) (2), ,i i i  

 are given by (20). Inserting these values in (25) we 

acquire, up to the second order approximation,  the following expression for 

stream function  

   

 

2 4 62 3

2 2 3 3

2

4

5

2 3

4 4
( ) ( )

63
2

2
2

( .

1

)

i i

n n

n n

i

n

n

S C r D S

C r D r I

C r D r r I r I



  






 
     



  
      
  







 

(

2

6

) 

3. Boundary conditions and determintion of arbitrary constants 

Anonymous coefficients emerging in (24) and (26)  must be  extricated from 

the following boundary conditions: 

 

A.   Vanishing of normal at the interface needs that   

 

0e 
   on 1,r   

(

2

) 

0i 
   on 1.r   

(

2

) 

B.  Continuity of shear velocity across the interface requires that 

e r

r r

  


     on 1,r   

(

2

9

) 

C.  Continuity of  shear stress is at the interface, i.e., 
   r re i
t t 

 on 1r   

that yields 

 

2 2

1 1e i

r r r r r r

 


     
   

          on 1,r   

(

3

0

) 

where 
/ .

e in n  
    

D. Finally, we have  

 2

2e r I 
   as  .r   

(

3

1
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) 

 

The above stated boundary conditions lead, respectively, to the following set of 

non-homogeneous system of algebraic equations: 

   

2
2 2 3 3

2
2 2 2

2 2
3 3 3 4 4 4 4

2 2
5 5 5 5

2 2

0 2, 4,

4 4
,

63 21

8
2 4 4 ,

21

20
2 3 5 1.12 , 3 4 6 0,

21

4 2 5 7 1.12 ,

( 1) ( 3) ( 2)

0

0 6,

4 2

,i i

i

i e

e

n n n

n

n

n n nA B for n C D for n

D S C D S

A B C D S

A C D S S A B C D

A B C D S

n A n B nC n D or n

A B

C

f





 

   

     

    

         

    

      











2 2
2 2

2 2
3 3

2
4 4 4 4

2 2
5 5 5 5

2 8
2 4 3 12 ,

175 7

10 10 867167.54 1.9048 ,

12
18 4 4 18 ,

385

28 10 10 28 640.24 ,

( 1)( 2) ( 3) ( 3) ( 1)(2 ) 0 6.

e i

e i

e

e

n n n n

Z W S S

A D S S

A B C D S

A B C D S

n n A n n B n nC n n D for n

 

  

  

   

 











     

   

   

    

       



  


















    

(

3

2

) 

where 
/ .

e in n  
 Solving above system of non-homogeneous equations 

yields 

 
2 2

2

2 2 2

2

2 2 2

2

6 2

2

2

3 3

0.00190476(262.5 1 44.44 )
,

1.

0.0634921(31.5 23.625 0.03 2.33 1 )
,

1. 1.

0.1269841(15.75 11.8125 0.015 1.67 )
,

1. 1

86716.75( 6.4578 10

e i

e i i

e i i

e

S S
A

S S S

S S

C

D

A B

B

S

S

 



  



  





 




   



   






  





  
 


2 2 11

2 2 11 23

3

2 2 6 6

3

2

4 54 4 4 5

4.39307 10 )
,

1. 1.

86717.3( 4.39304 10 6.400801 10 )
,

1. 1.

86717.3( 2.19656 10 2.19652 10 )
,

1. 1.

0.00222635 35.5689(0.0
,

1

e i

e i i

e i i

e

C

D

B

S S

S S S

S S S

S
A D AC B

 



  



  









 

 



 



         



   




   





2 2 2 2

2 2

5 5

15744 1 )
,

1 1

35.0089
, 0

1
0 6.

e e

e
n n n n

S S

S
C D A B C D for n
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3

3
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4. Evaluation of drag force and some limiting cases 

The most significant feature of the present flow problem is to evaluate 

hydrodynamic resisting force exerted on the Reiner-Rivin fluid sphere   due to 

the flow of second-order fluid  which can be  attained by  means of the formula 

[Payne and Pell(1960)] 

   

 2

lim
, ,

8 ,
2 ,e R

e
D n

R R
F

R I R

 
 







 


 

(

3

4

) 

where  
 ,R 

 is the stream function corresponding to the fluid motion at 

infinity. The non-dimentional forms of both 
 ,e R 

 and 
 , ,R 

 

respectively,  are given by  

   

   

 

2
2

2

2 2
2 2 1 2 2

3 2

2 2
1 2 3 3 3

, ,

1 3 1
, 10 8

2 2 5

1
2 1 14 8

7

8

e

e e

R UR

R a R R R
R Ua A B S f f I

a R a a a

a R R a
S S g g A B I

I

R a a R

 

 

 

 

           
                  

           

          
         

 

     
          

 

 
 

 

 

4

2 2 2
2 4 4 2

2

4

5

5

2

5

8

5 7

.

e e

R a a R a
S f A B I S g A

a R R a R

a
B I

R

 



           
             

           

 
  

 



 

 

(

3

5

) 

By implanting the expressions of 
 ,e R 

 and 
 ,R 

 from Eq.(35) into 

the Eq.(34), we obtain 

2
28 ( 0.75 0.5 0.0114286 ),

eD n eF aU B S    
 

(

3

) 

After inserting the value  of 2B
 from Eq.(33), one can get the required 

expression for drag as follows  

  

2 2
8

{ 0.75 0.5 (0.0114286 0.012381 ) 0.042328 }.
1

en

D e i

aU
F S S

 
 


     

  

(

3

7 
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Some limiting cases: 

(a).  When cross-viscous parameter 
0eS 

:  

In this case second-order fluid becomes a Newtonian fluid and drag obtained is  

232
2 9 6

63
.
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3

8
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Which agrees  pretty well with the result obtained by Ramkissoon(1989) 

(b).  When cross-viscous parameters for external and internal fluids i.e. 
0, 0e iS S 

: 
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Again agrees  good with the result obtained by Happel and Brenner(1965). 

(c).  When elastico-viscous  parameter 0T  : 
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This is very new result reported here for Reiner-Rivlin fluid dominating both  

the flow fields. 

 

5. Discussions  

The non-dimensional drag coefficient  ND
  is defined as  the ratio of  obtained 

drag force  DF
  exerted on Reiner-Rivlin fluid sphere to the drag force on a 

solid sphere  which is a suitable  approach in an unbounded expanse of fluid.  
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Figure 2.  Variation of  
with for 0.0086, 0.75and various .N i eD S T S  

 

The alteration in non-dimensional drag DN  w.r.t. different fluid parameters is 

shown graphically in Figures 2,3, 4 and 5. 

 

Figure 3.  Variation of  
with for 0.0086, 0.75 and various .N e iD S T S   
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Figure 4.   Variation of  
with for 0.5, 0.75 and various .N e iD S S T  

 

 

Figure 5. Variation of  
with for 0.5, 0.75and various .N e iD T S S 

 

The alteration  in  DN  is plotted for various values of λ in Figure 3.  It is 

observed that, at a fixed Se , as viscosity ratio λ increases, drag decreases. It is 
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the  drag coefficient DN  against relative viscosity λ. It shows that  drag DN 

decreases  with decreasing value of  T and λ which exhibits that  liquid sphere 

experiences less drag as compared with solid case.  It is depicted through the  

Figure 5 that  keeping  the remaining parameters  unchanged, DN is reported to 

be decreasing w.r.t. elastico-viscous. But this decrease in DN is less  for T  as 

compared the increase in DN    for  increasing Si . Further, one can easily notice 

that drag DN is less for Newtonian fluid sphere over Reiner-Rivlin fluid sphere. 

 

6. Conclusions 

The ace purpose pursued in this work is to investigate the flow of second-order 

fluid past a Reiner-Rivlin fluid sphere under the Stokes' approximation. Both 

the flow fields have been obtained in the form of  stream functions expressing 

in a power series of Se and Si. Expression for the drag force evaluated in an 

analytical fashion yielding some renowned, novel and fruitful results as   

limiting cases validated with the past similar outcomes. The impact of 

numerous  parameters such as Reynolds number Re, cross-viscous parameters 

Se and Si, elastico-viscous parameter T and relative viscosity λ on the flow is 

discussed and found to have a sturdy effect on the flow characteristics. The 

drag experienced on the sphere is examined. Furthermore, it is worth noticing 

that the external characteristics like  cross-viscosity and elastico-viscosity 

diminish and internal cross-viscosity enhances the drag exerted on the 

implanted fluid sphere.  
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