
IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

394

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY

RELATION AND CONDITIONAL ENTROPY

Nurfadhilah Binti Sapingi
1
, Noraini Binti Ibrahim

2
, Mustafa Mat Deris

3

1,2,3
Faculty of Science and Information Technology, Universiti Tun Hussein Onn Malaysia

(UTHM), Parit Raja, Johor, Malaysia

E-mail:
1
fadhilah_sapingi@yahoo.com,

2
noraini@uthm.edu.my,

3
mmustafa@uthm.edu.my

Nurfadhilah Binti Sapingi, Noraini Binti Ibrahim, Mustafa Mat Deris. Improving

Mutant Selection For Gui Using Similarity Relation And Conditional Entropy--

Palarch’s Journal Of Archaeology Of Egypt/Egyptology 17(10), 394-410. ISSN 1567-

214x

Keywords: Gui Testing, Software Testing, Mutation Analysis, Mutation Operators,

Similarity Relation, Conditional Entropy

ABSTRACT

Mutation technique is known as one of the most powerful techniques to detect fault

capabilities. Mutation generates the fault version called mutants. Mutation makes small

changes in the code. The output is analysed if it is different from the original program. Then,

the mutant can be killed, or otherwise the mutant said as live. This mutation technique will be

used on Graphical User Interface (GUI), which plays an important role in testing the

interaction between user and software. Using this mutation technique, it may detect more

faults on Graphical User Interface (GUI) during testing to produce a good test suite. The

problem with the mutation technique is that it is expensive, thus new refinement technique,

such as mutant selection, is proposed. The lack of mutant selection decreases the

effectiveness and efficiency of testing due to a random selection of a small subset of mutants

and reducing some operator mutants from the test set for execution. Regardless of this,

reducing the number of mutants for execution is still important. Thus, this paper proposed

new refinement techniques for improving mutant selection in terms of effectiveness and

efficiency of testing known as Similarity Relation and Conditional Entropy. Similarity

Relation classifies the same mutants in the same class to avoid redundancy, while Conditional

Entropy selects mutant operator based on the classification of mutants. The results show that

Similarity Relation can reduce 85% of mutants, while Conditional Entropy reduces 80% of

mutant operator with 100% defect fault capabilities. Similarity Relation and Conditional

Entropy can improve mutant selection to select the optimum mutants and mutants’ operator

for testing without less effectiveness and efficiency.

mailto:1fadhilah_sapingi@yahoo.com
mailto:2noraini@uthm.edu.my
mailto:3mmustafa@uthm.edu.my

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

395

INTRODUCTION

Graphical User Interface (GUI) is a flexible graphical element for user to

interact with software system. Graphical User Interface (GUI) provides user

with graphical icons, such as button, edit boxes, and text to show information

[1-3]. Graphical User Interface (GUI) is the first expectation from user to

measure the quality of system. The disadvantage of the system comes from the

user if the Graphical User Interface (GUI) is unable to access and not user-

friendly. Regardless of this, the Graphical User Interface also needs a testing

to establish connection between software and its end user as GUI is the only

way for user to access the functionality of the software and reliable Human

Computer Interaction (HCI) process.

Graphical User Interface testing is more complex than other testing methods

[3, 4] and to measure accurateness and quality, the Graphical User Interface

(GUI) becomes more complex. Applying adequate testing is the only way to

help increase the confidence of user on the correctness of any application.

There are several testing techniques for testing Graphical User Interface

(GUI), but they still lack in detecting fault capabilities [5-7]. To develop a

high quality testing, the only approach that can help is a test that detects faults.

Concerned about this issue, the mutation testing concept is applied to obtain

the quality of Graphical User Interface (GUI).

The mutation concept is a powerful technique for detecting fault in the code

for getting the quality of test suite [8-10] [19-20]. Mutation generates fault

versions called as mutants on a system being tested. Mutation makes small

changes on the source code and analysis of the output. If the output has

different results from the original system, then the result can be said as a killed

mutant, or otherwise the result can be said as alive mutants.

Mutation has a famous problem, which is being expensive. Mutation testing

generates a large number of mutants even for a small program. It becomes

costly due to compiling and executing the large number of copies of a

program. Concerned about this problem, many researchers introduced the

refinement method of mutation to solve this issue. The well-known method of

reduction, which inadvertently removes mutants and to be applied in

implementation, will select only a subset of mutations, and usually they do not

take into account the structure of the system and mutants [11-16]. The lack of

percentage decreases the effectiveness of the test. Nevertheless, there is still a

need for assessing the reduced number of mutants of these new methods,

which are proposed to achieve Similarity Relation and Conditional Entropy.

Similarity Relation and Conditional Entropy are applied in the concept of

mutations to decrease the number of mutants by classifying them into same

class, while Conditional Entropy selects mutant operators depend on mutant

classification. This method will cut down the number of mutants without

abbreviating the effectiveness of random mutant removal and avoid the

advantage of mutants to be implemented again.

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

396

In this context, this research attempts to introduce a new technique using

mathematical approach, which classifies the same attributes in one class to

avoid redundancy for executing the test set. To identify the same attributes,

firstly, the data set is transformed into matrix table and classified using the

formula of Similarity Relation. When the mutants are classified in the same

class, then the formula of Conditional Entropy is used to select the mutants’

operator. The results show that this proposed technique produces a good

percentage in the reduction of mutants with 100% defect fault capabilities.

Thus, this experiment showed that the proposed technique can improve the

mutants’ selection.

The main contributions of this paper are:

a. To propose a method to select optimum mutants using similarity Relation.

b. To evaluate and compare proposed approaches with other mutation test

approaches (randomly selected) in terms of effectiveness and efficiency.

This remaining part is organised as follows: Part 2 will introduce the material

and method. Part 3 discusses regarding results of experiment. Part 4 concludes

the aims of the research.

MATERIAL AND METHOD

This part highlights several refinement mutation techniques from previous

works, the process of mutation, and describes the construction of Similarity

Relation and Conditional Entropy for mutation.

Mutation technique

Mutation defines as an effective method or technique to identify fault and

obstacles of identifying the adequate test data [8]. The number to detect

potential fault is massive and it is too much to generate all mutants from one

complete system.

Traditional Mutation is the famous one previously the refinement mutation

was introduced [8]. The traditional mutation technique only point a group of

fault, which is next to the precise version based on that program and it is

hoped to be enough to reproduce all the faults [8]. From previous works [8],

the mutants used in traditional mutation are limited to simple mutants only.

Mutation requires an expensive cost due to the large number to generate

mutants and execute against the mutants. Many researchers are concerned

about this issue and tried to solve it by introducing the mutant reduction

technique. The techniques are [8]: Mutants Sampling, Mutants Clustering,

Higher Order Mutation and Selective Mutation.

Mutant sampling

Mutant sampling is a not difficult approach by Acree [8] and Budd [8]. For the

first step, all the potential mutants are produced as a traditional mutation. The

second step is the mutants being selected randomly and the remaining mutants

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

397

are discarded. Based on discussions among researchers [8], this method is

agreed to be less effective in terms of mutation score due to the discarded

mutants from a full set of mutants.

Mutant clustering

Mutant clustering was recommended by Hussains’s [8]. It is done by

clustering the mutants using the clustering algorithm. The first step generates

all possible mutants. The second step applies the algorithm to group the first

order mutants into various clusters based on the killable of the test cases. The

similar set in the same cluster will be killed. Only a small subset from the

cluster will be used and others are discarded. The empirical study indicates

that the clustering mutation is able to select fewer mutants, but at the same

time, still maintains the mutation score.

Selective mutation

Selective mutation was proposed by Mrthur [8] and extended by offut [8].

This method diminishes the amount number of mutants based on the operator

applied. The basic idea is that it finds a small set of mutation operators that

generate the subset of all the possible mutants without losing the effectiveness.

This method will impact the redundant data due to the mutation operator that

generates various numbers of mutants and some mutation operators are able to

generate more mutants as well. Researchers have also discussed on [8] how

this method reduces the number of equivalent mutants while maintaining the

effectiveness. This approach also achieves the highest rate of reduction

method compared to other methods.

Higher order mutation

Higher Order mutation was recommended by Jia and Harman [8], researcher

apply the concept for subsuming the HOMs, and this way is prefer to replace

the FOMs with the single HOMs to reduce the amount of mutants. This idea

come out from traditional mutants technique which is FOMs was created when

apply the mutation operator just once time, while the HOMs was created when

apply the mutation operator more than once time.

Process of mutation

The first process in Mutation is based on the traditional method. Fig. 1

illustrates the flow of mutation working. From the program, the set of fault

program is labelled as ‘P’ and called as mutants labelled as ‘P’ that was

generated from the original program

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

398

Figure 1: Process of Mutation Analysis [9]

The mutation operators are designed to modify the variable and expression by

insertion, replacement, and reduction [9].

The Mutation Operator is used due to the rule for generating mutants from the

original program.

Figure 2: Operator of Mutation Analysis [8]

Fig. 2 is the example of the first set of Mutation Operator used in traditional

mutation. Therefore, the next process is to test set T, which is supply towards

the system. The test needs to be executed against the original program ‘P’

before starting mutation analysis to identify the correction of test cases. It

needs to be fixed before running other mutants if p is incorrect. The mutant ‘P’

is labelled as killed if the result of ‘P’ is different from P in test case T.

Technique proposed

Similarity Relation and Conditional Entropy: The construction of this new

technique will be applied in mutation to reduce the large number of mutants

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

399

and to select the subset of operator mutants without reducing the effectiveness

of the testing.

Similarity Relation removes redundancy of the mutants by classifying the

same mutant in classes for reducing the number of mutants, while conditional

entropy selects the mutant operator based on the classification of mutants.

Based on previous work [17], the redundancy of mutants occurs due to the

mutation operator generating various numbers of mutants and some mutation

operators being able to generate more mutants.

Remove the data that have the redundancy, it is the safely reduction technique

[17]. Further details of the Similarity Relation and Conditional Entropy steps

are illustrated as following data set:

Data Set: The Data Set used in this research can be found online [16]. This

data contains 85 mutants that obtained the MOs Mutants Operator. Fig. 3

shows the MOs Graphical User Interface (GUI).

Firstly, the data set is transformed into matrix table. The matrix table consists

of column and row. The column lists the mutants, while the row lists the

mutant operator.

The decision for each test is either kill or alive. Value ‘1’ in the column and

row indicates that the mutants are satisfied by a mutant operator, while value

‘0’ means the mutants are unsatisfied by a mutant operator. Table 1 shows the

mutants matrix table (MMT).

 Table 1: Mutants Matrix Table

 REW SW

I

RE

L

AI

W

AS

W

AD

W

M

W

S

EWWAR

-

RWWAR

RW

HW

STATU

S

M0

01

1 0 0 0 0 0 0 0 0 alive

M0

02

1 0 0 0 0 0 0 0 0 alive

M0

1

1 0 0 0 0 0 0 0 0 alive

M0

2

1 0 0 0 0 0 0 0 0 alive

M0

3

1 0 0 0 0 0 0 0 0 alive

M0

4

1 0 0 0 0 0 0 0 0 alive

M0

5

1 0 0 0 0 0 0 0 0 alive

M0

6

1 0 0 0 0 0 0 0 0 alive

M0 1 0 0 0 0 0 0 0 0 alive

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

400

7

M0

8

1 0 0 0 0 1 0 0 0 alive

M0

9

1 0 0 0 0 0 0 0 0 alive

M0

10

1 0 0 0 0 0 0 0 0 alive

M0

11

1 0 0 0 0 0 0 0 0 alive

M0

12

0 1 0 0 0 0 0 0 0 alive

M0

13

0 1 0 0 0 0 0 0 0 alive

M0

14

0 1 0 0 0 0 0 0 0 alive

M0

15

0 1 0 0 0 0 0 0 0 alive

M0

16

0 1 0 0 0 0 0 0 0 alive

M0

17

0 1 0 0 0 0 0 0 0 alive

M0

18

0 1 0 0 0 0 0 0 0 alive

M0

19

0 1 0 0 0 0 0 0 0 alive

M0

20

0 1 0 0 0 0 0 0 0 alive

M0

21

0 1 0 0 0 0 0 0 0 alive

M0

22

0 1 0 0 0 0 0 0 0 alive

M0

23

0 0 1 0 0 0 0 0 0 alive

M0

24

0 0 1 0 0 0 0 0 0 alive

M0

25

0 0 1 0 0 0 0 0 0 alive

M0

26

0 0 1 0 0 0 0 0 0 alive

M0

27

0 0 1 0 0 0 0 0 0 alive

M0

28

0 0 1 0 0 0 0 0 0 alive

M0

29

0 0 1 0 0 0 0 0 0 alive

M0

30

0 0 0 1 0 0 0 0 0 alive

M0 0 0 1 0 0 0 0 0 0 alive

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

401

31

M0

32

0 0 1 1 0 0 0 0 0 alive

M0

33

0 0 1 1 0 0 0 0 0 alive

M0

34

0 0 1 1 0 0 0 0 0 alive

M0

35

0 0 1 1 0 0 0 0 0 alive

M0

36

0 0 0 1 0 0 0 0 0 alive

M0

37

0 0 0 1 0 0 0 0 0 alive

M0

38

0 0 0 1 0 0 0 0 0 alive

M0

39

0 0 0 1 0 0 0 0 0 alive

M0

40

0 0 0 1 0 0 0 0 0 alive

M0

41

0 0 0 1 0 0 0 0 0 alive

M0

42

0 0 0 1 0 0 0 0 0 alive

M0

43

0 0 0 1 0 0 0 0 0 alive

M0

44

0 0 0 0 0 0 0 0 0 alive

M0

45

0 0 0 1 0 0 0 0 0 alive

M0

46

0 0 0 1 0 0 0 0 0 alive

M0

47

0 0 0 0 1 0 0 0 0 alive

M0

48

0 0 0 0 1 0 0 0 0 alive

M0

49

0 0 0 0 1 0 0 0 0 alive

M0

50

0 0 0 0 1 0 0 0 0 alive

M0

51

0 0 0 0 1 0 0 0 0 alive

M0

52

0 0 0 0 0 0 0 0 0 alive

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

402

M05

3

0 0 0 0 1 0 0 0 0 alive

M05

4

0 0 0 0 1 0 0 0 0 alive

M05

5

0 0 0 0 1 0 0 0 0 alive

M05

6

0 0 0 0 1 0 0 0 0 alive

M05

7

0 0 0 0 1 0 0 0 0 alive

M05

8

0 0 0 0 0 1 0 0 0 alive

M05

9

0 0 0 0 0 1 0 0 0 alive

M06

0

0 0 0 0 0 1 0 0 0 Alive

M06

1

0 0 0 0 0 1 0 0 0 alive

M06

2

0 0 0 0 0 1 0 0 0 Alive

M06

3

0 0 0 0 0 1 0 0 0 alive

M06

4

0 0 0 0 0 1 0 0 0 alive

M06

5

0 0 0 0 0 1 0 0 0 alive

M06

6

0 0 0 0 0 1 0 0 0 Alive

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

403

M06

8

0 0 0 0 0 1 0 0 0 alive

M06

9

0 0 0 0 0 0 1 0 0 alive

M07

0

0 0 0 0 0 0 1 0 0 alive

M07

1

0 0 0 0 0 0 1 0 0 alive

M07

2

0 0 0 0 0 0 1 0 0 alive

M07

3

0 0 0 0 0 0 1 0 0 alive

M07

4

0 0 0 0 0 0 1 0 0 alive

M07

5

0 0 0 0 0 0 1 0 0 alive

M07

6

0 0 0 0 0 0 1 0 0 alive

M07

7

0 0 0 0 0 0 1 0 0 alive

M07

8

0 0 0 0 0 0 1 0 0 alive

M07

9

0 0 0 0 0 0 0 1 0 alive

M08

0

0 0 0 0 0 0 0 1 0 alive

M08

1

0 0 0 0 0 0 0 0 1 alive

M08

2

0 0 0 0 0 0 0 0 1 alive

M08

3

0 0 0 0 0 0 0 0 1 Alive

M08

4

0 0 0 0 0 0 0 0 1 alive

M08

5

0 0 0 0 0 0 0 0 1 alive

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

404

Figure 3: MOs GUI

Mutants classification using similarity relation

The process starts with the creation of Mutant Matrix Table (MMT), such as

Table 1. Given a complete , where , M* is a

set of condition attributes and decision attribute, such that, , for

any , where V, is called as the domain of attribute of m. In MMT,

similarity relation, S, can be defined for any subset of B , which is

defined based on Definition 1 [18].

Definition 1: Let , be a complete MMT. Similar

class
 , of mutants with reference to Operator Mutant, B, is defined as

 = { | }.

Based on definition 1, similar classes can be easily obtained by analysing

Table 1 with similarity relation.

Operator Mutants selection using conditional entropy

Conditional Entropy is used in this research to reduce a certain number of

common Operator Mutants attributes. Based on definition 2 [18], conditional

entropy can be calculated as follows:

Definition 2: and B C is an incomplete information

system. Let = { (), (),…., ()}, U | d = { , ,… }. The

conditional entropy can be defined as following equation:

EN (d | B)= ∑

 ()) ∑ (|

 ()) ())

Where

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

405

 ()) =

, i= 1, 2

 (| =

 =

 i= 1, 2 j= 1, 2

Hence,

EN (d | B)= ∑

 ()) ∑

 ()) ())

 = ∑

 ∑

 = ∑ ∑

Reduction rate calculation

The evaluation of effectiveness of proposed technique based on the reduction

rate. The following equation is used to calculate the rate of reduction.

Definition 3: Let m(M) be the number of reduced mutants, while n(M) be the

number of actual mutants. The reduction rate of mutants can be calculated as

follows:

=

 * 100

RESULTS AND DISCUSSION

Similarity Relation and Conditional Entropy are implemented to improve the

effectiveness of Mutant Selection. Firstly, classify the mutants in the same

class. Secondly, the selection of mutant operator is demonstrated. Then, the

rate of reduction is evaluated to verify the effectiveness of testing. From

definition 1 in previous section, the similar classes can be presented as:

|

|

|

|

{

 {

}

 {

}

 {

}

{

}

{

}

 }

|

|

|

|

Conditional Entropy: From definition 2 in previous chapter, the calculation of

conditional entropy is as below:

Step 1: Given a complete MMT in Table 1, we have:

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

406

{

{

 }

}

{

 {

}

 }

 {
{

}

}

 {

}

 {

}

 {
{

}

}

{

 {

}

 }

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

407

{

 {

}

 }

 {

}

[

(

)

(

)

 (

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)]

Step 2: When finished calculating the complete MMT, such as Step 1, we

need to calculate the multiple mutant operators. The probability of getting the

same value as Step 1 is analysed. These are some examples that have the same

value as Step 1.

 {

}

{

 }

 {

}

 [

(

)

(

)

(

)

]

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

408

Hence, this example shows the same values with Step 1. The Mutant

Operators selected are REW and ADW. So, from nine (9) mutant operators,

conditional entropy reduces it to two (2) mutant operators.

Step 3: When Steps 1 and 2 are completed, the reduction rate is calculated

according to definition 3 in the previous chapter.

The results show that with similarity relation, the percentage of mutants

reduced is 85%. From 85 mutants in the test set, only 13 mutants need to be

executed against, while from Nine (9) mutant operators, only two (2) mutant

operators remained. The fault detection capability is effective because all the

data sets are tested to safely remove redundant data. The results are clearer in

Table 2.

Table 2: Final Results

 REW ADW

m001, m002, m01, m02, m03, m04 m05,

m06,m07,m09,m010,m011

1 0

m012, m013, m014, m015, m016, m017, m018,

m019,m020,m021,m022

0 0

m023, m024, m025, m026, m027, m028, m029, m031 0 0

m036, m037, m038, m039, m040, m041, m042, m043 0 0

m047, m048, m049, m050, m051, m053, m054,

m055,m056,m057

0 0

m058, m059, m060, m061, m062, m063, m064,

m065,m066,m067,m068

0 1

m069, m070, m071, m072, m073, m074, m075,

m076,m077,m0078

0 0

m081, m082, m083, m084, m085 0 0

m032,m033,m034,m035 0 0

m030,m045,m046 0 0

m044,m052 0 0

m079,m080 0 0

m08 1 1

CONCLUSION

In conclusion, reducing the number of mutants and mutant operators for

execution is necessary for successful mutation, but the percentage of

effectiveness must not decrease. Therefore, the percentage of effectiveness of

the quality of testing must also not diminish. Similarity Relation and

Conditional Entropy are ideal methods for reducing the number of mutant and

selecting mutant operator without randomly and these methods do not reduce

the effectiveness of testing. Similarity Relation classifies the same class to

ensure all mutants are analysed and executed without any discarded data.

Conditional Entropy selects mutants based on formula to make sure the pattern

of mutant and mutant operator is the same. Overall, the experiment of

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

409

Similarity Relation and Conditional Entropy is successful in contributing to

the selection of optimum mutant without reducing the percentage of

effectiveness testing. Moreover, using this technique, processing time for

testing is saved and the cost due to the large number of mutants is reduced.

Further research can be done to improve the method in mutation analysis.

ACKNOWLEDGMENTS

The researcher would like to thank University Tun Hussein Onn Malaysia

(UTHM) and the Ministry of Higher Education Malaysia for supporting this

research.

REFERENCES

R. Carvalho, A Comparative Study of GUI Testing Aproaches, Faculdade de

Engenharia da Universidade do Porto, 2016.

F. M. Shaikh, S. Sabir, M. Abbas, An Optimized Approach for Graphical User

Interface Testing, ResearchGate Publication, RawalPindi, 2015, pp 1-

8.

D. Amalfitano, N. Amatucci, A. R. Fasolina, P. Tramontana , A Conceptual

Framework for The Comparison of Fully Automated GUI Testing

Technique, 2015 30th IEEE/ACM International Conference on

Automated Software Engineering Workshop (ASEW), 2015, pp. 50-

57.

R. S. Chhillar, A REVIEW: GUI TESTING, 2014.

R. M. L. M Moreira, A. C. Paiva, M. Nabuco, A. Memon, Pattern-Based GUI

Testing: Bridging the gap between design and quality assurance,

Software Testing, Verification and Reliability, vol. 27, no. 3, 2017,

p.e1629.

T. Wetzlmaier, R. Ramler, Hybrid monkey testing: enhancing automated GUI

tests with random test generation, Proceedings of the 8th ACM

SIGSOFT International Workshop on Automated Software Testing,

2017, pp. 5-10.

S. Nedyalkova, J. Bernardino, Open Sourcw Capture and Replay Tools

Comparison, Proceedings of the International C* Conference on

Computer Science and Software Engineering, 2013, pp. 117-119.

Y. Jia, M. Harman, An analysis and survey of the development of mutation

testing, IEEE Transactions on Software Engineering, vol. 37, no. 5,

2010, pp. 649-678.

T. T. Chekam, Automated and Scalable Mutation Testing, 2017 IEEE

International Conference on Software Testing, Verification and

Validation (ICST) , 2017, pp. 559-560.

J. Zhang, Z. Wang, L. Zhang, D. Hao, L. Zang, S. Cheng, L. Zhang, Predictive

Mutation Testing, Proceedings of the 25th International Symposium on

Software Testing and Analysis, Saarbrucken, Germany: ACM, 2016,

pp. 342-353.

F. Wu, J. Nanayati, M. Harman, Y. Jia, J. Krinke, Memory Mutation Testing,

Information and Software Technology, vol. 81, 2017, pp. 97-111.

S. J. Guillaume, Mutant Selection Using Machine Learning Techniques, en.

In: Machine Learning: Theory and Applications, 2015, p. 24.

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

410

M. Shahid, S. Ibrahim, M. N. Mahrin, A Study on Test Coverage in Software

Testingm, Advanced Informatics School (AIS), Universiti Teknologi

Malaysia, International Campus, Jalan Semarak, Kuala Lumpur,

Malaysia, 2011.

M. Linares-Vásquez, G. Bavota, M. Tufano, K. Moran, M. Di Penta, C.

Vendome, C. Bernal-Cárdenas, D. Poshyvanyk, August. Enabling

mutation testing for android apps, Proceedings of the 2017 11th Joint

Meeting on Foundations of Software Engineering, 2017, pp. 233-244.

Y. Wei, MuDroid : Mutation Testing For Android Apps, Univ. College

London, London, UK, Tech. Rep, 2015.

R. A. P Oliveria, E. Alegroth, Z. Gao, A. Memon, Definition and Evaluation

of Mutation Operators for GUI-Level Mutation Analysis, International

Conference On Software Testing, Verification and Validation

Workshop, Windsor, UK: IEEE Computer Society, 2015, pp. 1-10.

P. Ammann, M. E. Delamaro, J. Offutt, Establishing Theoretical Minimal Sets

of Mutants, 2014 IEEE International Conference on Software Testing,

Verification and Validation, 2014, pp. 21-30.

N. F.M Nasir, Test Case Reduction Using Similarity Relations and

Conditional Entropy, UTHM: Degree Master, 2018.

A. Dhankhar, S. Kamna, A Comprehensive Review of Tools & Techniques for

Big Data Analytics in International Journal of Emerging Trends in

Engineering Research, vol. 7, no.l 11, 2019, pp. 556–562.

S. Bhanu J, Baswaraj D., Bigul S. D., & JKR. Sastry, Generating test cases for

testing embedded systems using combinatorial techniques and neural

networks based learning model” in International Journal of Emerging

Trends in Engineering Research, vol. 7, no. 11, 2019, pp. 417–429.

