IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY
RELATION AND CONDITIONAL ENTROPY

Nurfadhilah Binti Sapingi', Noraini Binti Ibrahim? Mustafa Mat Deris®
123Faculty of Science and Information Technology, Universiti Tun Hussein Onn Malaysia
(UTHM), Parit Raja, Johor, Malaysia

E-mail; Yfadhilah sapingi@yahoo.com, 2noraini@uthm.edu.mv, 3mmustafa@uthm.edu.mv

Nurfadhilah Binti Sapingi, Noraini Binti Ibrahim, Mustafa Mat Deris. Improving
Mutant Selection For Gui Using Similarity Relation And Conditional Entropy--
Palarch’s Journal Of Archaeology Of Egypt/Egyptology 17(10), 394-410. ISSN 1567-
214x

Keywords: Gui Testing, Software Testing, Mutation Analysis, Mutation Operators,
Similarity Relation, Conditional Entropy

ABSTRACT

Mutation technique is known as one of the most powerful techniques to detect fault
capabilities. Mutation generates the fault version called mutants. Mutation makes small
changes in the code. The output is analysed if it is different from the original program. Then,
the mutant can be killed, or otherwise the mutant said as live. This mutation technique will be
used on Graphical User Interface (GUI), which plays an important role in testing the
interaction between user and software. Using this mutation technique, it may detect more
faults on Graphical User Interface (GUI) during testing to produce a good test suite. The
problem with the mutation technique is that it is expensive, thus new refinement technique,
such as mutant selection, is proposed. The lack of mutant selection decreases the
effectiveness and efficiency of testing due to a random selection of a small subset of mutants
and reducing some operator mutants from the test set for execution. Regardless of this,
reducing the number of mutants for execution is still important. Thus, this paper proposed
new refinement techniques for improving mutant selection in terms of effectiveness and
efficiency of testing known as Similarity Relation and Conditional Entropy. Similarity
Relation classifies the same mutants in the same class to avoid redundancy, while Conditional
Entropy selects mutant operator based on the classification of mutants. The results show that
Similarity Relation can reduce 85% of mutants, while Conditional Entropy reduces 80% of
mutant operator with 100% defect fault capabilities. Similarity Relation and Conditional
Entropy can improve mutant selection to select the optimum mutants and mutants’ operator
for testing without less effectiveness and efficiency.

394

mailto:1fadhilah_sapingi@yahoo.com
mailto:2noraini@uthm.edu.my
mailto:3mmustafa@uthm.edu.my

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

INTRODUCTION

Graphical User Interface (GUI) is a flexible graphical element for user to
interact with software system. Graphical User Interface (GUI) provides user
with graphical icons, such as button, edit boxes, and text to show information
[1-3]. Graphical User Interface (GUI) is the first expectation from user to
measure the quality of system. The disadvantage of the system comes from the
user if the Graphical User Interface (GUI) is unable to access and not user-
friendly. Regardless of this, the Graphical User Interface also needs a testing
to establish connection between software and its end user as GUI is the only
way for user to access the functionality of the software and reliable Human
Computer Interaction (HCI) process.

Graphical User Interface testing is more complex than other testing methods
[3, 4] and to measure accurateness and quality, the Graphical User Interface
(GUI) becomes more complex. Applying adequate testing is the only way to
help increase the confidence of user on the correctness of any application.
There are several testing techniques for testing Graphical User Interface
(GUI), but they still lack in detecting fault capabilities [5-7]. To develop a
high quality testing, the only approach that can help is a test that detects faults.
Concerned about this issue, the mutation testing concept is applied to obtain
the quality of Graphical User Interface (GUI).

The mutation concept is a powerful technique for detecting fault in the code
for getting the quality of test suite [8-10] [19-20]. Mutation generates fault
versions called as mutants on a system being tested. Mutation makes small
changes on the source code and analysis of the output. If the output has
different results from the original system, then the result can be said as a killed
mutant, or otherwise the result can be said as alive mutants.

Mutation has a famous problem, which is being expensive. Mutation testing
generates a large number of mutants even for a small program. It becomes
costly due to compiling and executing the large number of copies of a
program. Concerned about this problem, many researchers introduced the
refinement method of mutation to solve this issue. The well-known method of
reduction, which inadvertently removes mutants and to be applied in
implementation, will select only a subset of mutations, and usually they do not
take into account the structure of the system and mutants [11-16]. The lack of
percentage decreases the effectiveness of the test. Nevertheless, there is still a
need for assessing the reduced number of mutants of these new methods,
which are proposed to achieve Similarity Relation and Conditional Entropy.

Similarity Relation and Conditional Entropy are applied in the concept of
mutations to decrease the number of mutants by classifying them into same
class, while Conditional Entropy selects mutant operators depend on mutant
classification. This method will cut down the number of mutants without
abbreviating the effectiveness of random mutant removal and avoid the
advantage of mutants to be implemented again.

395

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

In this context, this research attempts to introduce a new technique using
mathematical approach, which classifies the same attributes in one class to
avoid redundancy for executing the test set. To identify the same attributes,
firstly, the data set is transformed into matrix table and classified using the
formula of Similarity Relation. When the mutants are classified in the same
class, then the formula of Conditional Entropy is used to select the mutants’
operator. The results show that this proposed technique produces a good
percentage in the reduction of mutants with 100% defect fault capabilities.
Thus, this experiment showed that the proposed technique can improve the
mutants’ selection.

The main contributions of this paper are:

a. To propose a method to select optimum mutants using similarity Relation.
b.To evaluate and compare proposed approaches with other mutation test
approaches (randomly selected) in terms of effectiveness and efficiency.

This remaining part is organised as follows: Part 2 will introduce the material
and method. Part 3 discusses regarding results of experiment. Part 4 concludes
the aims of the research.

MATERIAL AND METHOD

This part highlights several refinement mutation techniques from previous
works, the process of mutation, and describes the construction of Similarity
Relation and Conditional Entropy for mutation.

Mutation technique

Mutation defines as an effective method or technique to identify fault and
obstacles of identifying the adequate test data [8]. The number to detect
potential fault is massive and it is too much to generate all mutants from one
complete system.

Traditional Mutation is the famous one previously the refinement mutation
was introduced [8]. The traditional mutation technique only point a group of
fault, which is next to the precise version based on that program and it is
hoped to be enough to reproduce all the faults [8]. From previous works [8],
the mutants used in traditional mutation are limited to simple mutants only.

Mutation requires an expensive cost due to the large number to generate
mutants and execute against the mutants. Many researchers are concerned
about this issue and tried to solve it by introducing the mutant reduction
technique. The techniques are [8]: Mutants Sampling, Mutants Clustering,
Higher Order Mutation and Selective Mutation.

Mutant sampling
Mutant sampling is a not difficult approach by Acree [8] and Budd [8]. For the

first step, all the potential mutants are produced as a traditional mutation. The
second step is the mutants being selected randomly and the remaining mutants

396

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

are discarded. Based on discussions among researchers [8], this method is
agreed to be less effective in terms of mutation score due to the discarded
mutants from a full set of mutants.

Mutant clustering

Mutant clustering was recommended by Hussains’s [8]. It is done by
clustering the mutants using the clustering algorithm. The first step generates
all possible mutants. The second step applies the algorithm to group the first
order mutants into various clusters based on the killable of the test cases. The
similar set in the same cluster will be killed. Only a small subset from the
cluster will be used and others are discarded. The empirical study indicates
that the clustering mutation is able to select fewer mutants, but at the same
time, still maintains the mutation score.

Selective mutation

Selective mutation was proposed by Mrthur [8] and extended by offut [8].
This method diminishes the amount number of mutants based on the operator
applied. The basic idea is that it finds a small set of mutation operators that
generate the subset of all the possible mutants without losing the effectiveness.
This method will impact the redundant data due to the mutation operator that
generates various numbers of mutants and some mutation operators are able to
generate more mutants as well. Researchers have also discussed on [8] how
this method reduces the number of equivalent mutants while maintaining the
effectiveness. This approach also achieves the highest rate of reduction
method compared to other methods.

Higher order mutation

Higher Order mutation was recommended by Jia and Harman [8], researcher
apply the concept for subsuming the HOMSs, and this way is prefer to replace
the FOMs with the single HOMs to reduce the amount of mutants. This idea
come out from traditional mutants technique which is FOMs was created when
apply the mutation operator just once time, while the HOMSs was created when
apply the mutation operator more than once time.

Process of mutation
The first process in Mutation is based on the traditional method. Fig. 1
illustrates the flow of mutation working. From the program, the set of fault

program is labelled as ‘P’ and called as mutants labelled as ‘P’ that was
generated from the original program

397

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

Original Test Set
Program P I E
Fix P
Create
Mutant

Run Ton P

-
True \ False New Test
P Correct? BPata

Mutant
=
Run T on
Each Live P’
True False
i All P’ Anglyse

Quit Killed? Equivalent
- Mutant OQ

Figure 1: Process of Mutation Analysis [9]

The mutation operators are designed to modify the variable and expression by
insertion, replacement, and reduction [9].

The Mutation Operator is used due to the rule for generating mutants from the
original program.

Mutation

Operator Description

AR array reference ftor array reference replacement
ABS absolute value insertion

ACR array reference for constant replacement

AOR arithmetic operator replacement

ASR array reference for scalar wvariable replacement
CAR constant for array reference replacement

CNR comparable array nmame replacement

CRP constant replacement

CSR constant for scalar wvariable replacement

DER DO statement alterations

DS.A DATA statement alterations

GLLIRR GOTO label replacement

ILLCR logical connector replacement

ROR relational operator replacement

RSR RETURIN statement replacement

SAN statement analvsis

SAR scalar wvariable for array reference replacement
SCR scalar for constant replacement

S statement deletion

SRC source constant replacement

SVR scalar wvariable replacement

UOT unary opcrator insertion

Figure 2: Operator of Mutation Analysis [8]

Fig. 2 is the example of the first set of Mutation Operator used in traditional
mutation. Therefore, the next process is to test set T, which is supply towards
the system. The test needs to be executed against the original program ‘P’
before starting mutation analysis to identify the correction of test cases. It
needs to be fixed before running other mutants if p is incorrect. The mutant ‘P’
is labelled as killed if the result of ‘P’ is different from P in test case T.

Technique proposed

Similarity Relation and Conditional Entropy: The construction of this new
technique will be applied in mutation to reduce the large number of mutants

398

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

MO
01

MO
02

MO
MO
MO
MO
MO
MO

MO

and to select the subset of operator mutants without reducing the effectiveness
of the testing.

Similarity Relation removes redundancy of the mutants by classifying the
same mutant in classes for reducing the number of mutants, while conditional
entropy selects the mutant operator based on the classification of mutants.
Based on previous work [17], the redundancy of mutants occurs due to the
mutation operator generating various numbers of mutants and some mutation
operators being able to generate more mutants.

Remove the data that have the redundancy, it is the safely reduction technique
[17]. Further details of the Similarity Relation and Conditional Entropy steps
are illustrated as following data set:

Data Set: The Data Set used in this research can be found online [16]. This
data contains 85 mutants that obtained the MOs Mutants Operator. Fig. 3
shows the MOs Graphical User Interface (GUI).

Firstly, the data set is transformed into matrix table. The matrix table consists
of column and row. The column lists the mutants, while the row lists the
mutant operator.

The decision for each test is either kill or alive. Value ‘1’ in the column and
row indicates that the mutants are satisfied by a mutant operator, while value
‘0’ means the mutants are unsatisfied by a mutant operator. Table 1 shows the
mutants matrix table (MMT).

Table 1: Mutants Matrix Table
REW SW RE Al AS AD M EWWAR RW STATU

I L w W W W - HW S
S RWWAR
1 0 0 0 0 O 0 O 0 alive
1 0 0 0 0 O 0 O 0 alive
1 0 0 0 0 O 0 O 0 alive
1 0 0 0 0 O 0 O 0 alive
1 0 0 0 0 O 0 0 0 alive
1 0 0 0 0 O 0 0 0 alive
1 0 0 0 0 O 0 O 0 alive
1 0 0 0 0 O 0 O 0 alive
1 0 0 0 0 O 0O O 0 alive

399

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY

MO 1 0 0 0 0 1 0 O
8

MO 1 0 0 0 0 O 0 O
9

MO 1 0 0 0 0 O 0 O
10

MO 1 0 0 0 0 O 0 O
11

MO O 1 0 0 0 O 0 O
12

MO O 1 0 0 0 O 0 O
13

MO O 1 0 0 0 O 0 O
14

MO O 1 0 0 0 O 0 O
15

MO O 1 0 0 0 O 0 O
16

MO O 1 0 0 0 O 0 O
17

MO O 1 0 0 0 O 0 O
18

MO O 1 0 0 0 O 0 O
19

MO O 1 0 0 0 O 0 O
20

MO O 1 0 0 0 O 0 O
21

MO O 1 0 0 0 O 0 O
22

MO O 0 1 0 0 O 0 O
23

MO O 0 1 0 0 O 0 O
24

MO O 0 1 0 0 O 0 O
25

MO O 0 1 0 0 O 0 O
26

MO O 0 1 0 0 O 0 O
27

MO O 0 1 0 0 O 0 O
28

MO O 0 1 0 0 O 0 O
29

MO O 0 0 1 0 O 0 O
30

MO O 0 1 0 0 O 0O O

PJAEE, 17 (10) (2020)

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

400

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY

31

MO O 0 1 1 0 O 0 O
32
MO O 0 1 1 0 O 0 O
33
MO O 0 1 1 0 O 0 O
34
MO O 0 1 1 0 O 0 O
35
MO O 0 0 1 0 O 0 O
36
MO O 0 0 1 0 O 0 O
37
MO O 0 0 1 0 O 0 O
38
MO O 0 0 1 0 O 0 O
39
MO O 0 0 1 0 O 0 O
40
MO O 0 0 1 0 O 0 O
41
MO O 0 0 1 0 O 0 O
42
MO O 0 0 1 0 O 0 O
43
MO O 0 0 0 0 O 0 O
44
MO O 0 0 1 0 O 0 O
45
MO O 0 0 1 0 O 0 O
46
MO O 0 0 0 1 0 0 O
47
MO O 0 0 0 1 0 0 O
48
MO O 0 0 0 1 0 0 O
49
MO O 0 0 0 1 0 0 O
50
MO O 0 0 0 1 0 0 O
51
MO O 0 0 0 0 O 0 O
52

PJAEE, 17 (10) (2020)

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

alive

401

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

MO5 O 0 0 0 1 0 0 0 0 alive
3

MO5 O 0 0 0 1 0 0 0 0 alive
ﬁ/lOS 0 0 0 0 1 0 0 0 0 alive
i/IOS 0 0 0 0 1 0 0 0 0 alive
f\S/IOS 0 0 0 0 1 0 0 0 0 alive
K/IOS 0 0 0 0 0 1 0 0 0 alive
zIi./IO5 0 0 0 0 0 1 0 0 0 alive
ﬁ/IOG 0 0 0 0 0 1 0 0 0 Alive
(|3A06 0 0 0 0 0 1 0 0 0 alive
i/IOG 0 0 0 0 0 1 0 0 0 Alive
ﬁ/IOG 0 0 0 0 0 1 0 0 0 alive
i/IO6 0 0 0 0 0 1 0 0 0 alive
i/lOG 0 0 0 0 0 1 0 0 0 alive
E/IOG 0 0 0 0 0 1 0 0 0 Alive

402

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

M0O6 O 0 0 0 0 1 0 0 0 alive

M0O6 O 0 0 0 0 0 1 0 0 alive
i/lO? 0 0 0 0 0 0 1 0 0 alive
I(\)/IO7 0 0 0 0 0 0 1 0 0 alive
:\-/IO7 0 0 0 0 0 0 1 0 0 alive
ﬁ/lO? 0 0 0 0 0 0 1 0 0 alive
ﬁ/lO? 0 0 0 0 0 0 1 0 0 alive
i/lO? 0 0 0 0 0 0 1 0 0 alive
i/lO? 0 0 0 0 0 0 1 0 0 alive
f\s/IO7 0 0 0 0 0 0 1 0 0 alive
K/IO? 0 0 0 0 0 0 1 0 0 alive
EI?/IO? 0 0 0 0 0 0 0 1 0 alive
IS\)/IOS 0 0 0 0 0 0 0 1 0 alive
(I3A08 0 0 0 0 0 0 0 0 1 alive
i/IOS 0 0 0 0 0 0 0 0 1 alive
i/IOS 0 0 0 0 0 0 0 0 1 Alive
:Ii/IOS 0 0 0 0 0 0 0 0 1 alive
E/IOS 0 0 0 0 0 0 0 0 1 alive

403

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

TABLE I: MOs for GUI testuing techniques
Eid Class MWMutant (dperatornr A cTronyim
1 = —Remowve Existing Widget REW
2 = —Set Widget Invisible S5WI
3 R —Remowve Existing Listener REL
I | =i —A.dd Tdentical Widget AW
= = —Avdd Similar Widget AW
o = —Aodd Different Widget AW
7 =< —Aodd Another Listener AAL
—Expand/iReduce size of Win-
dows and Widgets will Awuato-
s adjust Their Sizes EWVWWARS RW WAR
—Expand size of windows and
widgets will not auto-adjust their
9 oo sizes EWWNMARS RWWHNAR
= —Reduce size of windows o hide
1 = widgets RWHW
= —Modify location of a widget to
11 -, a proper location MILWP
Modify location of a widget to
12 edges of windows MILWE
—Modify location of a widget to
13 owverlap with another MW O
1 —Modify size of widgets MW S
15 —Modify appearance of widgets WA
—Modify type of widgets (Button
16 changed to TextField) MWW
—Modify GUI library for widgets
(Swing button changed to AW T
17 Button) MWL
—Expand/Reduce size of Win-
dows and Widgets will Adjust
15 their Sizes EWWARY RWWAS

Figure 3: MOs GUI
Mutants classification using similarity relation

The process starts with the creation of Mutant Matrix Table (MMT), such as
Table 1. Given a completeMMT = (U, O,R, f), where O = 0 *U {d}, M* is a
set of condition attributes and d decision attribute, such that,f: U XM — V, for
any m e M, where V, is called as the domain of attribute of m. In MMT,
similarity relation, S, can be defined for any subset of BS M x, which is
defined based on Definition 1 [18].

Definition 1: Let MMT = (U,O,R,f), be a complete MMT. Similar
class I (M,,,), of mutants with reference to Operator Mutant, B, is defined as
I3 (M) = {My|M,, € U}.

Based on definition 1, similar classes can be easily obtained by analysing
Table 1 with similarity relation.

Operator Mutants selection using conditional entropy

Conditional Entropy is used in this research to reduce a certain number of
common Operator Mutants attributes. Based on definition 2 [18], conditional
entropy can be calculated as follows:

Definition 2: IIS = (U,C u{d}) and B < C is an incomplete information

system. Let U|lg= {Iz(X1), I5(X2),..... Ig(X;y))}, U | d = {d;, d3.... d;p}. The
conditional entropy can be defined as following equation:

EN (d | B)=— 2!, pUs())x Z p(d;| 15(x:)) log, P (d115(x,)
Where

404

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

Ig(x; .
pUUp(x) = i=1,2,...|U]

p (Up(xp.dj) _ 11p(x) ndyl

p(d;|1(x;)= i=1,2,..|Ulj=1,2,..m

pUp(x)) (x|
Hence,
U U
EN (d | B)=— X12) p(Up(x)) 2125 p (d)115(xy)) logs P (d;11p(x))
Z|U|d||13(xl)| Z|U|d| l1p(x;) N dj] l1p(x;) N dj|
- Ul |15 (xp)| Z Gy
_wlu |U|d| [1p(xy) nd;l l1p(x;) |
= 2z 2= ol 1082 15(x;) N d;|

Reduction rate calculation

The evaluation of effectiveness of proposed technique based on the reduction
rate. The following equation is used to calculate the rate of reduction.

Definition 3: Let m(M) be the number of reduced mutants, while n(M) be the
number of actual mutants. The reduction rate of mutants can be calculated as
follows:

— (M) —m M) , 100
n (M)

RESULTS AND DISCUSSION

Similarity Relation and Conditional Entropy are implemented to improve the
effectiveness of Mutant Selection. Firstly, classify the mutants in the same
class. Secondly, the selection of mutant operator is demonstrated. Then, the
rate of reduction is evaluated to verify the effectiveness of testing. From
definition 1 in previous section, the similar classes can be presented as:

((mo —1,mo —2,m01,m02,m03, m04, m05, m06, m07, A
{m09 m010,m011 }’
(mo8}, {m012 m013,m014,m015,m016,m017, m018, m019}
m020,m021, m022 ’
{m023,m024,m025,m026,m027, m028, m029, m031},
{m030,m045,m046},{m032,m033, m034, m035},
{m036,m037,m038, m039, m040, m041, m042, m043},
m047.m048, m049, m050, m051, m053,
{m044, m052},{m054’ m055,m056, m057 }
m058,m059, m060, m061, m062, m063, m064, m065,
{m066, m067, m068 }
m069,m070,m071, m072,m073,m074, m075, m076,
{m077, m078 }'
\{m079,m080}, {m081, m082, m083, m084, m085} J

"

Conditional Entropy: From definition 2 in previous chapter, the calculation of
conditional entropy is as below:

Step 1: Given a complete MMT in Table 1, we have:

405

=13

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

0 *
= {REW, SWI,REL, AIW,ASW,ADW,MWS, EWWAR
- RWWAR,RWHW}

~

(m001,m002, m01,m02,m03, m04, m05, m06, m07, N)
m08,m09,m010,m011,m012,m013,m014, m015,
m016,m017,m018,m019, m020,m021, m022,
m023,m024,m025,m026,m027, m028, m029, m030,
U m031,m032,m033,m034,m035,m036, m037,m038,
IND(@) = < <m039,m040,m041, m042, m043, m044, m045, m046, ; ;
m047,m048, m049, m050,m051, m052, m053, m054,
m055,m056,m057, m058, m059, m060, m061, m062,
m063,m064, m065, m066, m067, m068, m069, m070,
m071,m072,m073,m074,m075,m076, m077, m078,
L \m079, m080, m081, m082, m083, m084, m085 J)
(fm001,m002,m01, m02, m03,m04, m05, m06, m07,) \
|{m09,m010,m011 } I
Sy * (M001) = { =+ (mo2) =* (m01) =* (Mm02) =+ (Mm03) =+ (m04) $
|
)

| =« (Mm05) =* (M06) =+ (M07) =* (Mm09) =* (m010)
=% (m011),
Sy * (M012)
m012,m013,m014,m015,m016,m017,m018, m019,
{mOZO, m021,m022 }
=x (m013) =+ (m014) =% (m015) =* (m016) = (m017)
=x (m018) =+ (m019) =% (m020) =* (m021) == (m022),
{m023,m024,m025,m026, m027, m028, m029, m031}
Sy * (M023) =< =% (m024) =+ (m025) =+ (m026) =+ (m027)
=x (m028) =+ (m029) =% (m030) =* (m031),
{m036,m037,m038,m039, m040, m041, m042, m043}
Sy * (M036) =< =% (m037) =+ (m038) =+ (m039) == (m040)
=x (m041) =+ (m042) =+ (m043),

Sy * (M047)
m047,m048,m049, m050, m051, m053, m054, m055,

{m056, m057 }
=x (m048) =+ (m049) =% (m050) =* (m051) = (m053)
=x (m054) =+ (m055) =* (m056) =* (m057),
Sy * (M058)

((m058,m059, m060, m061, m062, m063, m064, m065,
{m066, m067, m068 }
= { =+ (m058) =x* (M059) =* (M060) =+ (M061) == (M062)
=x (m063) =+ (Mm064) =x (m065) =+ (M066) =+ (M067)
\=+ (Mm068)

406

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY

PJAEE, 17 (10) (2020)
Sy * (M069)
{{m069, m070,m071,m072,m073,m074, m075, m076,}]

m077,m078
= { =x (m070) =+ (m071) =+ (m072) =% (m073) }

=x (m074) =+ (m075) =% (m076) x (m077)

=+ (m078),)

{m081,m082,m083, m084, m085, }
Sw * (M081) = {=* (m082) =+ (m083) =+ (M084) =+ (m085),}
Sy * (M032) = {m032,m033,m034, m035} =+ (m033) =« (m034)
=x (m035),

Sy * (M030) = {m030, m045, m046} =+ (m045) =+ (m046)
Sy * (M044) = {m044,m052} == (m052),
Sy * (M079) = {m079,m080,} =+ (m080)
Sy * (M08) = {m08)}

EN (d |0)
' 2731 2 11 11<111 211>+8 8(81 28)
(7109) g5\11 %9 “11 g5\8 %93
0 ol 210 pq AL 11y 1010 10
|7 (_ 9 E) *§(_ °9 ?) *£<_ 092 10)
yss (51 25)+4 4(1 24)+3 3(31 23)
X — K — —
8515995 g5\2%9°1 g5\3%9 °3
2<21 22)+2 2(21 22)+1 1(11 21)
"85 \2%9 g5 \2 %9 g5 \1 %9
= —26.8454

Step 2: When finished calculating the complete MMT, such as Step 1, we
need to calculate the multiple mutant operators. The probability of getting the
same value as Step 1 is analysed. These are some examples that have the same
value as Step 1.
0 *={REW + ADW}
m001,m002, m01, m02, m03, m04, m05, m06,
Sm * (M001) = {m07, m09,m010,m011 }
Sy * (M08) = {m08}
(m012,m013,m014,m015,m016,m017, m018,m019,y
m020,m021,m022,m023,m024, m025,m026, m027,
m028,m029, m030,m031, m032, m033, m034, m035,
S, * (M012) = | m036,m037,m038, m039, m040, m041, m042, m043,
m044, m045, m046, m047, m048, m049, m050, m051,
mO052,m053,m054, m055, m056, m057, m069, m070,
m071,m072,m073,m074, m075, m076, m077, m078
\,m079, m080, m081, m082, m083, m084, m085
m058,m059, m060, m061, m062, m063, m064, m065
m066, m067, m068

J

]

Sy * (MO58) = {

2 73l 41+ 1<1l 21)
EN (d]0%) = — 85 (1279 2) 85\1 71
res 63(63l 263>+11 11(111 211)
) — | — _
85639 °63 g5\11 29 “11
— —26.8454

407

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

Hence, this example shows the same values with Step 1. The Mutant
Operators selected are REW and ADW. So, from nine (9) mutant operators,
conditional entropy reduces it to two (2) mutant operators.

Step 3: When Steps 1 and 2 are completed, the reduction rate is calculated
according to definition 3 in the previous chapter.

The results show that with similarity relation, the percentage of mutants
reduced is 85%. From 85 mutants in the test set, only 13 mutants need to be
executed against, while from Nine (9) mutant operators, only two (2) mutant
operators remained. The fault detection capability is effective because all the
data sets are tested to safely remove redundant data. The results are clearer in
Table 2.

Table 2: Final Results

REW ADW

m001, m002, m01, m02, m03, m04 mO5, 1 0

m06,m07,m09,m010,m011

m012, m013, m014, m015, m016, m017, m018, 0 0

m019,m020,m021,m022

m023, m024, m025, m026, m027, m028, m029, m031 0 0

m036, m037, m038, m039, m040, m041, m042, m043 0 0

m047, m048, m049, m050, m051, m053, m054, 0 0

m055,m056,m057

m058, m059, m060, m061, m062, m063, m064, 0 1

m065,m066,m067,m068

m069, m070, m071, m072, m073, m074, m0O75, 0 0

m076,m077,m0078

m081, m082, m083, m084, m085 0 0

m032,m033,m034,m035 0 0

m030,m045,m046 0 0

m044,m052 0 0

m079,m080 0 0

mO08 1 1
CONCLUSION

In conclusion, reducing the number of mutants and mutant operators for
execution is necessary for successful mutation, but the percentage of
effectiveness must not decrease. Therefore, the percentage of effectiveness of
the quality of testing must also not diminish. Similarity Relation and
Conditional Entropy are ideal methods for reducing the number of mutant and
selecting mutant operator without randomly and these methods do not reduce
the effectiveness of testing. Similarity Relation classifies the same class to
ensure all mutants are analysed and executed without any discarded data.
Conditional Entropy selects mutants based on formula to make sure the pattern
of mutant and mutant operator is the same. Overall, the experiment of

408

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

Similarity Relation and Conditional Entropy is successful in contributing to
the selection of optimum mutant without reducing the percentage of
effectiveness testing. Moreover, using this technique, processing time for
testing is saved and the cost due to the large number of mutants is reduced.
Further research can be done to improve the method in mutation analysis.

ACKNOWLEDGMENTS

The researcher would like to thank University Tun Hussein Onn Malaysia
(UTHM) and the Ministry of Higher Education Malaysia for supporting this
research.

REFERENCES

R. Carvalho, A Comparative Study of GUI Testing Aproaches, Faculdade de
Engenharia da Universidade do Porto, 2016.

F. M. Shaikh, S. Sabir, M. Abbas, An Optimized Approach for Graphical User
Interface Testing, ResearchGate Publication, RawalPindi, 2015, pp 1-
8.

D. Amalfitano, N. Amatucci, A. R. Fasolina, P. Tramontana , A Conceptual
Framework for The Comparison of Fully Automated GUI Testing
Technique, 2015 30th IEEE/ACM International Conference on
Automated Software Engineering Workshop (ASEW), 2015, pp. 50-
57.

R. S. Chhillar, A REVIEW: GUI TESTING, 2014.

R. M. L. M Moreira, A. C. Paiva, M. Nabuco, A. Memon, Pattern-Based GUI
Testing: Bridging the gap between design and quality assurance,
Software Testing, Verification and Reliability, vol. 27, no. 3, 2017,
p.e1629.

T. Wetzlmaier, R. Ramler, Hybrid monkey testing: enhancing automated GUI
tests with random test generation, Proceedings of the 8th ACM
SIGSOFT International Workshop on Automated Software Testing,
2017, pp. 5-10.

S. Nedyalkova, J. Bernardino, Open Sourcw Capture and Replay Tools
Comparison, Proceedings of the International C* Conference on
Computer Science and Software Engineering, 2013, pp. 117-119.

Y. Jia, M. Harman, An analysis and survey of the development of mutation
testing, IEEE Transactions on Software Engineering, vol. 37, no. 5,
2010, pp. 649-678.

T. T. Chekam, Automated and Scalable Mutation Testing, 2017 IEEE
International Conference on Software Testing, Verification and
Validation (ICST) , 2017, pp. 559-560.

J. Zhang, Z. Wang, L. Zhang, D. Hao, L. Zang, S. Cheng, L. Zhang, Predictive
Mutation Testing, Proceedings of the 25th International Symposium on
Software Testing and Analysis, Saarbrucken, Germany: ACM, 2016,
pp. 342-353.

F. Wu, J. Nanayati, M. Harman, Y. Jia, J. Krinke, Memory Mutation Testing,
Information and Software Technology, vol. 81, 2017, pp. 97-111.

S. J. Guillaume, Mutant Selection Using Machine Learning Techniques, en.
In: Machine Learning: Theory and Applications, 2015, p. 24.

409

IMPROVING MUTANT SELECTION FOR GUI USING SIMILARITY RELATION AND CONDITIONAL ENTROPY PJAEE, 17 (10) (2020)

M. Shahid, S. lbrahim, M. N. Mahrin, A Study on Test Coverage in Software
Testingm, Advanced Informatics School (AIS), Universiti Teknologi
Malaysia, International Campus, Jalan Semarak, Kuala Lumpur,
Malaysia, 2011.

M. Linares-Vasquez, G. Bavota, M. Tufano, K. Moran, M. Di Penta, C.
Vendome, C. Bernal-Cardenas, D. Poshyvanyk, August. Enabling
mutation testing for android apps, Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, 2017, pp. 233-244.

Y. Wei, MuDroid : Mutation Testing For Android Apps, Univ. College
London, London, UK, Tech. Rep, 2015.

R. A. P Oliveria, E. Alegroth, Z. Gao, A. Memon, Definition and Evaluation
of Mutation Operators for GUI-Level Mutation Analysis, International
Conference On Software Testing, Verification and Validation
Workshop, Windsor, UK: IEEE Computer Society, 2015, pp. 1-10.

P. Ammann, M. E. Delamaro, J. Offutt, Establishing Theoretical Minimal Sets
of Mutants, 2014 IEEE International Conference on Software Testing,
Verification and Validation, 2014, pp. 21-30.

N. F.M Nasir, Test Case Reduction Using Similarity Relations and
Conditional Entropy, UTHM: Degree Master, 2018.

A. Dhankhar, S. Kamna, A Comprehensive Review of Tools & Techniques for
Big Data Analytics in International Journal of Emerging Trends in
Engineering Research, vol. 7, no.l 11, 2019, pp. 556-562.

S. Bhanu J, Baswaraj D., Bigul S. D., & JKR. Sastry, Generating test cases for
testing embedded systems using combinatorial techniques and neural
networks based learning model” in International Journal of Emerging
Trends in Engineering Research, vol. 7, no. 11, 2019, pp. 417-429.

410

