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ABSTRACT  

Pattern recognition control method is widely used for surface electromyography (sEMG) 

application to differentiate movement types according to Motor Unit Action Potential (MUAP). 

MUAPs detected from muscles are taken as indicators to activate DC motors in assistive 

equipment such as prosthetic hand and instrumented wheelchair. Performance of control method 

can be measured through classification accuracy and very important before commercialization. 

Therefore, the objective of this study is to measure the classification accuracy of pattern 

recognition control method classifier, which is called Probability Density Function (PDF), in 

predicting hand movement activities either in contact or recovery phase during wheelchair 

propulsion. Arduino board was designed to produce a command signal to activate the power-

assist system (PAS) when the test subject is propelling the wheelchair forward. The developed 

method was tested against 5 able-bodied healthy subjects, where sEMG electrodes were placed 

on namely BIC, TRI, EXT, and FIX muscles. The accuracy results were found to be different for 

each subject. The highest was 99.4% while the lowest was 48.7%. It was found that low 

classification accuracy is due to PAS was activated in the recovery phase where it is supposed to 

remain in off condition. Consequently, PDF control method is effective for subject number 1 

only where the hand movements have been successfully identified based on MUAP. 
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1. Introduction 

Healthcare and engineering are two fields that benefited from the advancement 

of electromyogram (EMG) which has the ability to recognize limb motions [1]. 

For instance, intensive therapy activities that involve recognizing a patient’s 

movement intention bring a positive effect on the rehabilitation process for 

stroke patients [2]. Furthermore, by recognizing the intention, a human can 

control rehabilitation such as a prosthetic leg and instrumented wheelchair with 

neuromuscular-mechanical fusion-based interface device [3-5]. In fact, EMG 

pattern recognition systems have been widely used as an interface in various 

type of applications in man-machine such as an instrumented wheelchair, 

prosthetic hand and leg, virtual mouse, and keyboard [6]. These kinds of man-

machine are extracting surface EMG (sEMG) signals where electrodes are 

placed on the skin above the targeted muscle. 

But, sEMG signals always mixed from several muscles located near to the 

electrode and contain noise that causes limb motion recognition to become 

difficult [7]. Feature plays an important role in the EMG recognition system. 

The simplest features are time-domain features such as root mean square 

(RMS) and mean absolute value (MAV) that widely used because of 

computational simplicity [8].  

Implementation of these features showing improvement in classification 

accuracy for the control system of developed man-machines [9, 10]. Many 

studies have been conducted and the obtained result of classification accuracy 

were above 90% in real-time applications [11]. However, translation into the 

real application by connecting to the actuator is very limited [12]. 

Classification accuracy of EMG pattern recognition is depending on many 

factors such as electrode shifting and varying force during muscular 

contraction becoming challenges for long term EMG control systems [13, 14].   

Researches on instrumented wheelchair control system are mostly focusing on 

the user interface to control the power assist system based on limb motion [15]. 

A conventional electric wheelchair is using a joystick to control movement 

direction. But, there are limitations on joystick control for a disabled person 

that has a lack of full dexterous control of their arm [16].  

Meanwhile, for a manual wheelchair, these person has no ability to propel the 

push rim due to low in muscles strength [17]. An instrumented wheelchair is 

not just assisting the user in maneuvering around, but at the same time can be a 

piece of rehabilitation equipment to help them restoring back to their normal 

life by improving the muscle strength.   

There are two types of rehabilitation exercise which are active and passive. 

Active type is proven better compared to passive exercise in improving muscle 

strength [18, 19]. For example, propelling a manual wheelchair is a good 

exercise in increasing the strength of arm muscles.  

However, a disabled person has a limitation in producing enough force to 

propel it. This is where a power-assisted system (PAS) can provide assistance 

by reducing the propulsion force. In this study, an assisting system to integrate 

between power assist and sEMG data acquisition device was developed for an 

instrumented wheelchair. The system is functioning by recognizing arm motion 
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during wheelchair propulsion using a real-time pattern recognition control 

method.  

 

2. Methodology 

A. Subjects 

5 able-bodied and healthy male subjects were volunteered to participate in this 

study. All of them are students of Universiti Kuala Lumpur Malaysia France 

Institute and their details are tabulated in Table 1. The mean age is 22 ± 1 

years, height 162 ± 8 cm, and a weight of 60 ± 10 kg. Participants have no 

previous experience with EMG interface control wheelchair.  

A briefing session conducted to explain about hand movement pattern and 

timeline for the experiment. 12 minutes of training time is given for subjects to 

get used to the propulsion method. All of them were given a consent letter to 

participate in this study as per instructed by the university’s research ethics 

committee.  

TABLE I.  Subject Details 

 
 

B. Data Acquisition 

4 Myoware muscle sensors that consist of 16 surface electrodes connected to 

Arduino MEGA 2560 microcontroller board was used to record the Motor Unit 

Action Potential (MUAP). Silver-Silver Chloride (Ag-AgCl) surface electrode 

used in this study. Ag-AgCl electrode is a gelled electrode as a chemical 

(AgCl) interface between skin and metallic (Ag) part of electrode for the 

current to move freely between electrolyte and electrode [20].  

Sensors were placed on arm to record MUAP during propelling a wheelchair. 

Arm skin was shaved and cleaned with alcohol before surface electrodes are 

placed to reduce noise between the electrode and the skin. The location of 

sensors placement on targeted muscles is referred to Non-Invasive Assessment 

of Muscles (SENIAM) guidelines.  

4 muscles were selected to be placed surface electrodes which are Biceps 

Brachii (BIC), Triceps Brachii (TRI), Extensor Digitorum (EXT), and Flexor 

Digitorum (FIX). Arduino MEGA 2560 connected using a USB cable to a 

laptop to store MUAP value for further analysis purposes. The flow of sEMG 

signal from sensing MUAP in muscles to activation of PAS as in Figure 1.  
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Figure 1.  Flow of sEMG signal 

 

C. Experiment Protocol 

Subjects are instructed to sit on the wheelchair and their right arm is cleaned 

and shaved to place the surface electrodes. During wheelchair propulsion, hand 

activity can be divided into 2 phases - contact and recovery. The contact phase 

is when the subject is gripping the wheelchair’s push rim and propel forward 

that would cause the wheelchair to move forward. Hand position moved from 

position A to B as in Figure 2. Meanwhile, for the recovery phase, the subject’s 

hand returns to the starting position in the contact phase (B to A) and the 

wheelchair is not moving in this phase. The hand movement pattern during 

both phases is an arc. Arc pattern requires the subject’s hands to touch the push 

rim all the time. Other patterns are single loop, double loop, and semicircular, 

as shown in Figure 2. The experiments were conducted on a tiled floor.  

Duration of experiment 110 s involving 3 stages - individual data collection, 

calculation period, and method selection, as shown in Figure 3. Individual data 

collection is between 0 to 50 s, where pattern recognition control method was 

trained based on the separated phase between 5 contact phases and 5 recovery 

phases. This is where subjects have to propel forward 5 times and do hand 

return activity alternately. Between 50 to 60 s, calculations of MUAP mean and 

standard deviation (SD) in the previous stage are done and no wheelchair 

propulsion activity during this time. Validation of control method is between 

60 to 110s and involving the same method as on the individual data collection 

stage.  

 Probability Density Function (PDF) is the pattern recognition classifier used in 

this study. PDF was proven to has a high classification accuracy and good in 

handling for sEMG application [21, 22]. The equation of PDF is given in 

Figure 4. PDF is comparing the probability between values from the contact 

and recovery phase to discern which one has higher value using PDF equation. 

e is a constant Euler’s number which is equal to 2.71828, π is 3.14159, μ is 

mean, σ is SD and X is MUAP readings.  
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Figure 2.  Hand movement pattern: (a) contact phase, (b) recovery phase 

 

 
Figure 3.  Stages of experiment 

 
Figure 4.  PDF equation 

 

D. Double threshold control method and transverse channel 

Activation of power-assist system depending on one single muscle or called as 

single threshold would produce a higher rate of error in recognizing the MUAP 

pattern [23]. This matter can be overcome by implementing a double threshold 

control method. The double threshold is by adding another muscle as the 

indicator for PDF to recognize the MUAP pattern to differentiate hand 

movement in contact and recovery phases. The selection of pair muscles is 

based on a transverse channel by combining sEMG signals from two opposing 

muscles such as BIC pairing with TRI and EXT paired with FIX.      

 

3. Experimental Results 

Figure 5 shows MUAP for subject 1 for the whole experiment. The total 

experiment duration is 110 s, which were divided into 3 stages (individual data 

collection, calculation period, and classifier validation). The maximum value of 

MUAP in each phase was determined. Table 2 shows the mean and SD of 

MUAP for all subjects collected during individual data collection experiments. 

The highest mean for subject 1 is 3.02 V for EXT muscle and the highest SD is 
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±1.60 V for TRI. For subject 2, the highest mean is 4.69 V (FIX) and the 

highest SD is ±0.77 V (EXT). For subject 3, the highest mean is 4.74 V (FIX) 

and the highest SD is ±1.38 V (TRI). For subject 4, the highest mean and SD 

which belong to FIX are 3.83 V and ±0.74 V, respectively. Similarly, for 

subject 5 where FIX has the highest mean and SD, which are1.33 V and ±0.37 

V, respectively. Figure 6 is placement of sEMG sensors onto targeted muscles. 

Figure 7 shows the performance of the PDF control method in differentiating 

MUAP patterns in contact and recovery phases for subject 1 with results from 

BIC & TRI muscles. PAS switched on when Arduino board sending signal “1” 

to the motor driver that acts as an interface between the processor and DC 

motor by allowing higher current and voltage based on a low-current control 

signal. Meanwhile, when the signal is “0”, PAS is in off condition. PAS was 

switched on in contact phase 7, 8, and 9 only. It remains in off condition for all 

recovery phases and contact phase 6 and 10.  In contact phase 7, PAS switched 

on for 0.58 s, 0.12 s for contact phase 8, and 0.63 s in contact phase 9. Figure 8 

shows the performance of PDF for subject 1 with results from EXT & FIX 

muscles. PAS was switched on in contact phase 6 and 7, and recovery phase 9. 

In contact phase 6, PAS switched on for 0.75s, 0.53s for contact phase 7 and 

0.21s in recovery phase 9. Compared with the combination of BIC & TRI, PAS 

switched on during the recovery phase where it should remain in off condition.  

Classification accuracy determined for all subjects is given in Table 3. The 

highest accuracy is 99.4% for subject 2 from BIC & TRI muscles and the 

lowest is 48.7% for subject 5 from BIC & TRI muscles. Average classification 

accuracy for EXT & FIX is 94.6%, which is higher than BIC & TRI (48.7%).  

 

 
Figure 5.  Experiment MUAP result for subject 1 
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TABLE II.  Mean and sd for all subjects. C is contact phase and r is recovery 

phase 

 
 

 
Figure 6.  Placement of 4 Myoware muscle sensors on BIC, TRI, EXT and FIX 

muscles 

 

 
Fig. 7.  PDF control method performance for subject 1 based on BIC & TRI 

MUAP signals 
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Fig. 8.  PDF control method performance for subject 1 based on EXT & FIX 

MUAP signals 

 

TABLE III.  CLASSIFICATION ACCURACY 

 
 

4. DISCUSSION 

PDF pattern recognition control method has been successfully tested on 5 

subjects to differentiate MUAP patterns during wheelchair propulsion. The 

mean MUAP value for the contact phase is normally higher than the recovery 

phase due to the amount of force required is different in both phases. However, 

some subjects have mean MUAP in the recovery phase higher than the contact 

phase. For example, EXT muscle for subject 2 has a higher mean MUAP in the 

recovery phase (4.69 V) compared to 4.08 V in the contact phase. This kind of 

result would affect the classification accuracy. But for subject 2 (EXT) case, he 

has higher MUAP value in all recovery phases compare to the contact phase 

during data collection experiment as in Table 4. 

TABLE IV.  Subject 2 Ext Muap Result For Contact And Recovery 

Phases 
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TABLE V.  Subject 5 Muap Result For Bic And Tri Muscles 

 
 

For the lowest classification accuracy, which is 48.7%, has been recorded for 

subject 5. The trend for BIC is different as contact phase 1 and 3 is higher than 

recovery phase 1 and 3 as in Table 5. However, in other phases, the values are 

opposite. Meanwhile, for TRI, contact phase 1, 4 and 5 are higher than the 

recovery phase. This kind of pattern is difficult for PDF control method to 

differentiate the movement based on phase only.PAS activation is depending 

on MUAP pattern based on training data for both phases. PAS must be 

switched on in contact phase only, where subjects are propelling forward to 

move the wheelchair.  

PAS can’t be activated during the recovery phase because during this is 

moment, the subject’s hands are moving back to get ready for the next contact 

phase. Activation PAS at a wrong timing will harm the wheelchair user by 

moving forward that is not tally with user desire. As for subject 1, signals from 

BIC & TRI indicated PAS to power on in 3 out of contact phase and none in 

recovery phases. Meanwhile, for EXT & FIX, PAS switched on 2 times out of 

5 contact phases and once in the recovery phase. Such a thing must be avoided 

and a condition should be added into the coding to stop the PAS from 

switching on during the recovery phase. Figure 9 shows PAS activation during 

the contact and recovery phase for all subjects.   

 

 
Figure 9.  PAS activation times for all subjects in contact and recovery phases 
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5. Conclusion 

A real-time EMG pattern recognition using a PDF control method classifier has 

been conducted experimentally to activate the Power Assist System (PAS) of 

an instrumented wheelchair. Based on the signals acquired from the hand 

muscles, the developed system successfully classified the movement of the 

subject's hand with accuracy between 48.7% to 99.4%. Regardless of the 

results, the developed system showed potential in translating the muscle's 

signal to activate PAS, which is very beneficial in the rehabilitation process. In 

the future, the use of artificial intelligence combined with a high-speed 

microcontroller is expected to significantly improve the developed system. 

 

Acknowledgment 

The authors would like to thank UniKL and UMP for technical supports and 

MajlisAmanah Rakyat (MARA) for financial aid from under MARA Research 

and Innovation Fund (RDU192702).  

 

References 

K. Xing, et al., "A real-time EMG pattern recognition method for virtual 

myoelectric hand control", Neurocomputing, vol. 136, (2014), pp. 345-

355. 

P. S. Lum, et al., "Robot-assisted movement training compared with 

conventional therapy techniques for the rehabilitation of upper-limb 

motor function after stroke", Archives of Physical Medicine and 

Rehabilitation, vol. 3, no. 7, (2002), pp. 952-959. 

P. Shenoy, et al., "Online electromyographic control of a robotic prosthesis", 

IEEE Transactions on Biomedical Engineering, vol. 55, no. 3, (2008), 

pp. 1128-1135. 

H. Huang, et al., "Continuous locomotion-mode identification for prosthetic 

legs based on neuromuscular–mechanical fusion", IEEE Transactions 

on Biomedical Engineering, vol. 58, no. 10, (2011), pp. 2867-2875. 

G. Jang, et al., "EMG-Based Continuous Control Scheme with Simple 

Classifier for Electric-Powered Wheelchair", IEEE Transactions on 

Industrial Electronics, vol. 63, no. 6, (2016) pp. 3695-3705. 

M. A. Oskoei and H. Hu, "Myoelectric control systems—A survey", 

Biomedical Signal Processing and Control, vol. 2, no. 4, (2007), pp. 

275-294. 

D. Farina, M. F. Lucas, and C. Doncarli, "Optimized wavelets for blind 

separation of nonstationary surface myoelectric signals", IEEE 

Transactions on Biomedical Engineering, vol. 55, no. 1, (2007), pp. 78-

86. 

K. S. Kim, et al., "Comparison of k-nearest neighbor, quadratic discriminant 

and linear discriminant analysis in classification of electromyogram 

signals based on the wrist-motion directions", Current Applied Physics, 

vol. 11, no. 3, (2011), pp. 740-745. 



PJAEE, 17 (9) (2020)  

3440 

M. Atzori, et al., "Electromyography data for non-invasive naturally-controlled 

robotic hand prostheses", Scientific Data, vol. 1, no. 1, (2014), pp. 1-13. 

K. Nazarpour, A. R. Sharafat, and S. M. P. Firoozabadi, "Application of higher 

order statistics to surface electromyogram signal classification", IEEE 

Transactions on Biomedical Engineering, vol. 54, no. 10, (2007), pp. 

1762-1769. 

G. Rasool, et al., "Real-time task discrimination for myoelectric control 

employing task-specific muscle synergies", IEEE Transactions on 

Neural Systems and Rehabilitation Engineering, vol. 24, no. 1, (2015), 

pp. 98-108. 

R. N. Khushaba, et al., "Combined influence of forearm orientation and 

muscular contraction on EMG pattern recognition", Expert Systems 

with Applications, vol. 61, (2016), pp. 154-161. 

K. H. Park, H. I. Suk, and S. W. Lee, "Position-independent decoding of 

movement intention for proportional myoelectric interfaces", IEEE 

Transactions on Neural Systems and Rehabilitation Engineering, vol. 

24, no. 9, (2015), pp. 928-939. 

A. H. Al-Timemy, et al., "Improving the performance against force variation of 

EMG controlled multifunctional upper-limb prostheses for transradial 

amputees", IEEE Transactions on Neural Systems and Rehabilitation 

Engineering, vol. 24, no. 6, (2015), pp. 650-661. 

A. S. Kundu, et al., "Hand gesture recognition based omnidirectional 

wheelchair control using IMU and EMG sensors", Journal of Intelligent 

& Robotic Systems, vol. 91, no. 3-4, (2018), pp. 529-541. 

L. Fehr, W. E. Langbein, and S. B. Skaar, "Adequacy of power wheelchair 

control interfaces for persons with severe disabilities: A clinical 

survey", Journal of Rehabilitation Research and Development, vol. 37, 

no. 3, (2000), pp. 353-360. 

K. Kiran and K. Uma Rani, "Analysis of EMG signal to evaluate muscle 

strength and classification", International Research Journal of 

Engineering and Technology (IRJET), vol. 4, no. 7, (2017), pp. 177-

182. 

X. Zhang and P. Zhou, "High-density myoelectric pattern recognition toward 

improved stroke rehabilitation", IEEE Transactions on Biomedical 

Engineering, vol. 59, no. 6, (2012), pp. 1649-1657. 

R. P. Van Peppen, et al., "The impact of physical therapy on functional 

outcomes after stroke: what's the evidence?" Clinical Rehabilitation, 

vol. 18, no. 8, (2004) pp. 833-862. 

S. Day, "Important factors in surface EMG measurement", Bortec Biomedical 

Ltd publishers, (2002), pp. 1-17. 

D. Zhou, et al. "Surface EMG based hand motion recognition using combined 

growing neural gas and linear discriminant analysis", 10th International 

Conference on Human System Interaction (HSI2017), (2017) May 15. 

S. Thongpanja, et al., "Probability density functions of stationary surface EMG 

signals in noisy environments", IEEE Transactions on Instrumentation 

and Measurement, vol. 65, no. 7, (2016), pp. 1547-1557. 



PJAEE, 17 (9) (2020)  

3441 

C. Bonell, C. Tabernig, and E. G. Spaich, "Evaluation of a double threshold 

algorithm to detect electromyographic activity in the healthy and paretic 

Tibialis Anterior muscle", VI Latin American Congress on Biomedical 

Engineering CLAIB 2014, Paraná, Argentina, (2014) October 29 - 31. 

.  


