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ABSTRACT 

New generalized classes of separation axioms in topological spaces namely, Е and δ-ß-separation 

axioms by utilizing Е -open and δ-ß-open sets respectively are  introduced and studied. Several of their 

fundamental characterizations and their relationships with other corresponding kinds of spaces are 

discussed. Moreover, New forms of Regularity and Normality namely, Е (resp.δ-ß)-Regularity and Е 

(resp.δ-ß)-Normality are investigated in the context of these new classes of Е -open and δ-ß-open sets 

respectively. As well as several of interesting properties which are concerning of Е (resp.δ-ß)-Regularity 

and Е (resp.δ-ß)-Normality are established.   

Mathematics Subject Classification: 54C08, 54D20, 54A05, 54C05.   

1. Introduction 

The class of generalized open and closed sets has an important role in general 

topology and it applications, especially its suggestion new generalized of separation 

axioms which are useful in digital topology. The investigation on generalization of 

open and closed sets has lead to significant contribution to the theory of separation 

axioms. Indeed a significant theme in General Topology, Real analysis and many 

other branches of mathematics concerns the variously modified forms of separation 

axioms by utilizing generalized open and closed sets. 

 “Furthermore, in recent literature, we find many topologists worldwide are focusing 

their researches in the direction of investigating different types of separation axioms. 

Some of these have been found to be useful in computer science and digital topology 

[see for example [1, 2]”. Dontcheve and Ganster [1] proved that the digital line is T3/4 

space but not T1. Also, Navalagi [3] introduced semi generalized- Ti spaces, i= 0, 1, 2. 
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In addition, in 2011, Ahu Açıkgöz [4] defined two new separation axioms called 

ß*T1/2 and ß** T1/2 spaces as applications of ß*g−closed sets. 

Hariwan Z. Ibrahim in [5] presented and investigated some weak of separation axioms 

by using the concepts of Bc-open sets and the Bc-closure operator. Also, in the same 

year Hussein A. Khaleefah[6] studied new types of separation axioms termed by, 

generalized b- Ri, i= 0, 1 and generalized b-Ti, i= 0, 1, 2 by using generalized b-open 

sets, Relations among these types are investigated, and several properties and 

characterizations are provided.  

“In addition, Regularity and Normality are important topological properties and hence 

they are significance both from intrinsic interest as well as from applications view 

point to obtain factorizations of Regularity and Normality in terms of weaker 

topological properties”. 

Many authors have studied several forms of normality and regularity [7, 8, 9, 10] 

Recently, A.I. EL-Maghrabi and M.A. AL-Juhani [11] introduced and investigated a 

new class of separation axioms called M-Ti-spaces, i = 0, 1, 2. Also, the M-Regularity 

and the M-Normality are examined in the context of these new concepts. B. K. Tyagi 

and H. V. Chauhan in [12] explained the relationships among several separation 

axioms such as,  μ-T_ο,μ-T_1,μ-T_2,μ-T_(1⁄2),   μ-regularity,μ-normality,μ-R_ο,μ-

R_1,μ-D_ο,μ-D_1,μ-T_2,μ-R_δ,μ-π_ο,μ-weakly regular,μ-R_(D_δ )  ,μ-R_(d_δ )  ,μ-

R_D,μ-R_d,μ-D_(D^* )  and μ-D_(d^* ), in the framework of generalized topological 

spaces, also they discussed the relationship of some of the above axioms with θ-

generalized topology. 

As well as, in [13] S.  H. Abdulwahid and A. M. F. AL. Jumaili, introduced and 

studied some new types of separation axioms called, E_c  (resp.〖 δ-ß〗_c )-

separation axioms and some of their fundamental properties and relationships with 

other types of spaces are discussed. 

The main goal of the present paper is to consider and study new classes of generalized 

separation axioms called,Е and δ-ß-separation axiomsby using Е -open and δ-ß-open 

sets respectively. Several basic properties and preservation properties concerning of 

these kinds of generalized separation axioms are presented. Also, the relationships 

among these types of separation axioms and other kinds of spaces are investigated. 

Furthermore, 

 Е (resp.δ-ß)-Regularity and Е and δ-ß-Normality are studied in the context of these 

new concepts. Additional, some of basic interesting properties of them are provided.  

 

2. PRELIMINARIES 

 

Throughout this paper, (𝒳, 𝒯), (𝒴,  𝒯∗) and (𝒵, 𝒯∗∗)(or simply 𝒳, 𝒴 and 𝒵) meantopological 

spaces on which no separation axioms are assumed unless explicitly stated. For anysubset 𝒜 

 of 𝒳, the closure and interior of A are denoted by Cl(𝒜) and Int(𝒜), respectively. We recall 

  the following required definitions and the fundamental concepts, which will be used often 

 throughout this paper.  

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟐. 𝟏: Let (𝒳, 𝒯) be a topological space. A subset 𝒜 𝑜𝑓 𝒳 is said to be:  
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a)  Regular open (resp. regular closed) [𝟏𝟒]if 𝒜 =  𝐼𝑛𝑡(𝐶𝑙(𝒜))(𝑟𝑒𝑠𝑝.  𝒜 =

 𝐶𝑙(𝐼𝑛𝑡(𝒜))).  

b)  𝛿 − open [15] if for each 𝓍 ∈ 𝒜 there exists a regular open set 𝒱 such that 𝓍 ∈

𝒱 ⊆ 𝒜. The δ-interior of 𝒜 is the union of all regular open sets contained in 𝒜 and is 

denoted by 𝐼𝑛𝑡𝛿(𝒜). The subset A is called 𝛿 − open [15] if 𝒜 =  𝐼𝑛𝑡𝛿(𝒜). A point 

𝓍 ∈ 𝒳 is called a 𝛿 − cluster  points of 𝒜 [15] if 𝒜 ∩  Int(Cl(𝒱))  ≠  ∅, for each 

open set 𝒱 containing 𝓍. The set of all δ-cluster points of A is called the δ-closure of 

𝒜 and is denoted by 𝐶𝑙𝛿(𝒜). If 𝒜 = 𝐶𝑙𝛿(𝒜), then 𝒜 is said to be 𝛿 − closed [15]. 

The complement of 𝛿 − closed set is said to be 𝛿 − open set. A subset 𝒜 of a 

Topological space 𝒳 is called 𝛿 − open [15] if for each 𝓍 ∈ 𝒜 there exists an open 

set 𝒢 such that, 𝓍 ∈  𝒢 ⊆  Int(Cl(𝒢))  ⊆ 𝒜. The family of all 𝛿 − open sets in 𝒳 is 

denoted by. 𝛿𝛴(𝒳, 𝒯). 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟐. 𝟐: Let(𝒳, 𝒯)be a Topological space. Then:  

a) A subset 𝒜 of a space 𝒳 is called 𝐸 − open[𝟏𝟔]if  

𝒜 ⊆  Cl(𝛿 − 𝐼𝑛𝑡(𝒜)) ⋃ I𝑛𝑡(𝛿 − 𝐶𝑙(𝒜)). The complement of an 𝐸

− open set is called  

𝐸 − closed. The intersection of all 𝐸 − closed sets containing 𝒜 is called the 𝐸

− closure   

of 𝒜 [𝟏𝟔] and is denoted by𝐸 − 𝐶𝑙(𝒜). The union of all 𝐸

− open sets of 𝒳 contained in 

 𝒜 is called the𝐸 − interior[𝟏𝟔] of 𝒜 and is denoted by 𝐸 − Int(𝒜).   

b) A subset 𝒜 of a space 𝒳 is called 𝛿 − ß − open [𝟏𝟕] or e∗ − open [𝟏𝟖], if  

𝒜 ⊆  Cl(Int(𝛿 − Cl(𝒜 ))), the complement of 𝛿 − ß − open set is called𝛿 − ß

− closed.   

The intersection of all 𝛿 − ß − closedsets containing 𝒜is called the 𝛿 − ß −

closure of 𝒜   [𝟏𝟕] and is denoted by 𝛿 − ß − Cl(𝒜). The union of all 𝛿 − ß −

open sets of 𝒳 𝒜 is called  contained in the 𝛿 − ß −

interior [𝟏𝟕] of 𝒜 and is denoted by𝛿 − ß − 𝐼𝑛𝑡(𝒜). 

𝐑𝐞𝐦𝐚𝐫𝐤 𝟐. 𝟑: The family of all 𝐸 − open (resp. 𝐸 − closed, 𝛿 − ß − open, 𝛿 − ß −

closed)   

subsets of 𝒳 containing a point 𝓍 ∈ 𝒳 is denoted by 𝐸Σ(𝒳, 𝓍)  

 (resp. 𝐸𝐶(𝒳, 𝓍), 𝛿 − ßΣ(𝒳, 𝓍), 𝛿 − ß𝐶(𝒳, 𝓍)). The family of all 𝐸 − open  

(resp. 𝐸 − closed, 𝛿 − ß − open, 𝛿 − ß − closed)sets in 𝒳 are denoted by 𝐸Σ(𝒳,

𝒯)   

(𝑟𝑒𝑠𝑝. 𝐸𝐶(𝒳, 𝒯), 𝛿 − ßΣ(𝒳, 𝒯), 𝛿 − ß𝐶(𝒳, 𝒯)).  

𝐏𝐫𝐨𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧 𝟐. 𝟒: [𝟏𝟔, 𝟏𝟗] the following properties hold for a space 𝒳: 

a) The Arbitrary union of any family of 𝐸 − (𝑟𝑒𝑠𝑝. 𝛿 − ß) − open sets in𝒳,   

is an 𝐸 − (𝑟𝑒𝑠𝑝. 𝛿 − ß) − open set.   

b) The Arbitrary intersection of any family of 𝐸 − (𝑟𝑒𝑠𝑝. 𝛿 − ß) − closed sets  

in 𝒳, is an 𝐸 − (𝑟𝑒𝑠𝑝. 𝛿 − ß) − closed set. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟐. 𝟓: [𝟏𝟑] The following properties hold for a topological space (𝒳, 𝒯): 

a) Every regular closed subset in a space 𝒳 is 𝛿 − ß − open set.   
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Regular 

open 

b-open open 

set 

α-open Semi-open 

Pre-open ß-open 

δ-open δ-semi-open E-open δ- ß-open 

b) if 𝒳 is regular space. Then every open set is an Е and 𝛿 − ß − open set.    

Remark 2.6: “We have the following figure in which the converses of implications 

need not be true, see the examples in [19], [16] and [18]”. 

 

 

 

 

 

 

 

 

a) Figure (1): The relationships among some well-known generalized open sets 

in topological spaces 

3. 𝐂𝐇𝐀𝐑𝐀𝐂𝐓𝐄𝐑𝐈𝐙𝐀𝐓𝐈𝐎𝐍𝐒 𝐎𝐅 Е (𝒓𝒆𝒔𝒑. 𝜹 − ß) − 𝓣𝒊 − 𝐒𝐏𝐀𝐂𝐄𝐒 (𝒊 = 𝟎, 𝟏, 𝟐) 

Our motivation in this section is to provide several characterizations and some basic  

properties concerning of other kinds of separationaxioms namely, Е (𝑟𝑒𝑠𝑝. 𝛿 −

ß) − 

separation axioms such as Е − 𝒯0 − (𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝒯0), Е − 𝒯1

− (𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝒯1) and 

 Е − 𝒯2 − (𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝒯2) − Spaces, as well as to discussion the relationships 

among these kinds of spaces and other well −  known spaces.   

  𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟑. 𝟏: A mapping 𝑓: (𝒳, 𝒯) ⟶ (𝒴,  𝒯∗) is said to be: 

i) Е − Irresolute, [𝟐𝟎] if 𝑓−1(𝒱) is Е − open in 𝒳 ∀ Е − open sub − set 𝒱 of 𝒴.   

ii) 𝛿 − ß − Irresolute, [𝟐𝟎]  if 𝑓−1(𝒱) is 𝛿 − ß − open in 𝒳 ∀ 𝛿 − ß −

open set 𝒱 of 𝒴.   

iii) Е − open, if the image of each open set of (𝒳, 𝒯) is Е − open of (𝒴,  𝒯∗). 

iv) 𝛿 − ß − open, if the image of each open set of (𝒳, 𝒯) is 𝛿 − ß −

open of (𝒴,  𝒯∗). 

v) Е − closed, if the image of each closed set of (𝒳, 𝒯) is Е − closed of (𝒴,  𝒯∗). 

vi) 𝛿 − ß − closed, if the image of each closed set of (𝒳, 𝒯) is 𝛿 − ß −

closedof (𝒴,  𝒯∗). 

vii) Е − continuous, [𝟏𝟔] if  𝑓−1(𝒱) is Е −

open in 𝒳 for every open subset 𝒱 of 𝒴.   

viii) 𝛿 − ß − continuous, [𝟏𝟗] if  𝑓−1(𝒱) is 𝛿 − ß −

open in 𝒳 ∀ open subset 𝒱 of 𝒴. 

ix) Strongly − Е − open, if the image of each Е − open set of 𝒳 is Е − open of 𝒴. 

x) Strongly − 𝛿 − ß − open, if the image of each 𝛿 − ß − open set of 𝒳 is 𝛿 −

ß − 

open of 𝒴. 

xi) Е − Homeomrphism, if 𝑓 is bijective, Е − irresolute and strongly − Е −

open.  

xii) 𝛿 − ß − Homeomrphism, if 𝑓 is bijective, 𝛿 − ß − irresolute and strongly −

𝛿 − ß − open.    
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𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟑. 𝟐: [𝟐𝟎]𝐴 topological space(𝒳, 𝒯) is said to be:   

a) 𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯0 − Space if for each distinct points 𝓍 and 𝓎 of 𝒳, there is   

 Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − open set containing one of them but not the other.   

b) 𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯1 − 𝑆𝑝𝑎𝑐𝑒 if for each pair of distinct points 𝓍, 𝓎 (𝓍 ≠ 𝓎) ∈

𝒳,   there exist two Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − open sets 𝒰 and 𝒱 such that 𝓍 ∈ 𝒰  

𝑏𝑢𝑡 𝓎 ∉ 𝒰 𝑎𝑛𝑑 𝓎 ∈ 𝒱 𝑏𝑢𝑡 𝓍 ∉ 𝒱.   

c) 𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯2 − 𝑆𝑝𝑎𝑐𝑒 𝑜𝑟 𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß) −

𝐻𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓 𝑆𝑝𝑎𝑐𝑒 if for each pair  

of distinct points𝓍, 𝓎 (𝓍 ≠ 𝓎) ∈ 𝒳, ∃ two disjoint Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

open sets 𝒰 and   

  𝒱 such that𝓍 ∈ 𝒰 𝑎𝑛𝑑 𝓎 ∈ 𝒱. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟑: The following conditions are hold in a topological space(𝒳, 𝒯): 

a) Every 𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯2 − 𝑆𝑝𝑎𝑐𝑒 is 𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯1 − 𝑆𝑝𝑎𝑐𝑒   

b) Every 𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯1 − 𝑆𝑝𝑎𝑐𝑒 is 𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯0 − 𝑆𝑝𝑎𝑐𝑒   

c) Every 𝐸 − 𝒯2 − 𝑆𝑝𝑎𝑐𝑒 is 𝛿 − ß − 𝒯2 − 𝑆𝑝𝑎𝑐𝑒.   

d) Every 𝐸 − 𝒯1 − 𝑆𝑝𝑎𝑐𝑒 is 𝛿 − ß − 𝒯1 − 𝑆𝑝𝑎𝑐𝑒.  

e) Every 𝐸 − 𝒯0 − 𝑆𝑝𝑎𝑐𝑒 is 𝛿 − ß − 𝒯0 − 𝑆𝑝𝑎𝑐𝑒.  

𝑷𝒓𝒐𝒐𝒇: The proof is clear it is followsdirectly from their respective definitions.   

𝐑𝐞𝐦𝐚𝐫𝐤 𝟑. 𝟒: From the respective definitions, the relationships among Е (𝑟𝑒𝑠𝑝. 𝛿

− ß) −  

 𝒯𝑖 − 𝑠𝑝𝑎𝑐𝑒𝑠 (𝑖 = 0, 1, 2)and some other well − knowntypes of spaces shown in  

the following figure:   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2): The relationships among Е (resp. δ-ß)-𝓣𝒊 − 𝒔𝒑𝒂𝒄𝒆𝒔 (𝒊 = 𝟎, 𝟏, 𝟐) and 

some other well-known types of spaces 

 

 

 

However noneof these implicationsis reversible as shown in the following examples.    

𝐄𝐱𝐚𝐦𝐩𝐥𝐞𝐬 𝟑. 𝟓: (𝟏) −  Let 𝒳 =  {𝑎, 𝑏, 𝑐, 𝑑} with a topology 

  𝒯 =  {∅, {𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, 𝒳 }. Then, 𝒳 is 𝐸 − 𝒯0 − 𝑆𝑝𝑎𝑐𝑒,   

but it is neither 𝐸 − 𝒯1 − 𝑆𝑝𝑎𝑐𝑒 nor 𝐸 − 𝒯2 − 𝑆𝑝𝑎𝑐𝑒. 

T2 - Space 

 

T1 - Space 

 

T0 - Space 

 

E - T2 - Space 

 

δ - ß -T2 - Space 

 

E - T1 - Space 

 

E - T0 - Space 

 

δ - ß -T1 - Space 

 

δ - ß -T0 - Space 
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(𝟐) − Let 𝒳 =  {𝓍, 𝓎, 𝓌, 𝓏}with a topology 𝒯 = 

 {∅, {𝓍}, {𝓌}, {𝓍, 𝓎}, {𝓍, 𝓌}, {𝓍, 𝓎, 𝓌}, {𝓍, 𝓌, 𝓏}, 𝒳}. Then, 𝒳 is 𝛿 − ß − 𝒯0 −

𝑆𝑝𝑎𝑐𝑒, but it is neither 𝛿 − ß − 𝒯1 − 𝑆𝑝𝑎𝑐𝑒 nor 𝛿 − ß − 𝒯2 − 𝑆𝑝𝑎𝑐𝑒. 

 𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟑. 𝟔: Consider 𝒳 any infinite set with the co − finite topology  𝒯𝑐 

(such that the closedsets are 𝒳 and the finite subsets).    

 Since 𝒳 ∖ {𝓍} is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − open set, therefore 𝒳 is, 𝐸 − 𝒯1 and 𝛿 − ß −

𝒯1 Space.  

But there is no non emptyЕ and 𝛿 − ß −

open sets are disjoint, so 𝒳 cannot be neither   

𝐸 − 𝒯2 nor 𝛿 − ß − 𝒯2 space. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟕: For a space (𝒳, 𝒯)the following properties are equivalent:   

a) 𝒳 is an  𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯0 − 𝑆𝑝𝑎𝑐𝑒; 

b) For every two distinct points 𝓍, 𝓎 (𝓍 ≠ 𝓎) ∈ 𝒳,   

 Е − 𝐶𝑙({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})) ≠ Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎})).  

𝑷𝒓𝒐𝒐𝒇: 𝐍𝐞𝐜𝐞𝐬𝐬𝐢𝐭𝐲.  Assume that𝒳 𝑖𝑠 𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯0 −

𝑆𝑝𝑎𝑐𝑒 and ∀ 𝓍, 𝓎 (𝓍 ≠ 𝓎) ∈ 𝒳,  there exists an Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

open set 𝒰 (𝑠. 𝑡) 𝓍 ∈ 𝒰, 𝓎 ∉ 𝒰 ⟹ 𝓎 ∈ 𝒳 ∖ 𝒰,  

 where 𝒳 ∖ 𝒰 is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

closed which does not contain 𝓍 but contains 𝓎.   

Since Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎})) is the smallestЕ (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

closed set   

 containing 𝓎, thus Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎})) ⊆ 𝒳 ∖ 𝒰 and hence    

 𝜘 ∉ Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎})).  

So Е − 𝐶𝑙({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})) ≠ Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎})).  

(𝐒𝐮𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐲), suppose that 𝓍, 𝓎 (𝓍 ≠ 𝓎) ∈ 𝒳, and  

Е − 𝐶𝑙({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})) ≠ Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎})).  

Let 𝓏 ∈ 𝒳  such that 𝓏 ∈ Е − 𝐶𝑙({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})) but 

 𝓏 ∉ Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎})).  

We prove that𝓍 ∉ Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎})). Suppose that,  

𝓍 ∈ Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎})),  

consequently{𝓍} ⊆ Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎})), which implies that, 

 Е − 𝐶𝑙({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})) ⊆ 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎})) and hence  

 𝓏 ∈ Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎}))which is a contradiction with the fact of    

𝓏 ∉ Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎})). Therefore, 𝓍

∉ Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎})), 

  which implies that, 𝓍 ∈ 𝒳 ∖ Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎})). So  

 𝒳 ∖ Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎}))is anЕ (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

 open set containing 𝓍 

  but not 𝓎. Therefore, 𝒳 is an  𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯0 − 𝑆𝑝𝑎𝑐𝑒.  

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟖: Let 𝒳 be a topological space. Then the following properties are equivalent:    

a) 𝒳 is an  𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯1 − 𝑆𝑝𝑎𝑐𝑒.  

b) For each point 𝓍 ∈ 𝒳 the singleton set {𝓍} isЕ (𝑟𝑒𝑠𝑝. 𝛿 − ß) − closed set,  
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c) For each point𝓍 ∈ 𝒳, Е − 𝐷({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐷({𝜘})) = ∅.  

𝑷𝒓𝒐𝒐𝒇: (𝒂) ⟹ (𝒃)Let 𝑋 be𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯1 − 𝑆𝑝𝑎𝑐𝑒. For each 𝓍, 𝓎 (𝓍 ≠ 𝓎) ∈

𝒳, there  exists Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −  open set 𝒰 (𝑠. 𝑡) 𝓎 ∈ 𝒰 𝑏𝑢𝑡 𝓍 ∉

𝒰. Consequently, 𝓎 ∈ 𝒰 ⊆ 𝒳 ∖ {𝓍}.   

 Thus 𝒳 ∖ {𝓍} = ⋃{𝒰: 𝓎 ∈ 𝒳 ∖ {𝓍}} which is the union of an Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

 open sets.   Then, 𝒳 ∖ {𝓍} is an Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

 open set. Thus{𝓍} 𝑖𝑠 Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −  closed set.  

(𝒃) ⟹ (𝒂)Suppose that {𝒫} is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −  closed for each 𝒫 ∈ 𝒳.    

So via supposition for each 𝓍, 𝓎 (𝓍 ≠ 𝓎) ∈ 𝒳, {𝓍}, {𝓎} are Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

closed sets.  

Hence, 𝒳 ∖ {𝓍}, 𝒳 ∖ {𝓎}are Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − open sets  

 such that, 𝓍 ∈ 𝒳 ∖ {𝓎}, 𝓎 ∉ 𝒳 ∖ {𝓎} and 𝓎 ∈ 𝒳 ∖ {𝓍}, 𝓍 ∉ 𝒳 ∖ {𝓍}.   

Therefore, 𝒳 is an  𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯1 − Space. 

  (𝒃) ⟹ (𝒄) Let {𝓍} be Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −  closed set for each 𝓍 ∈ 𝒳. Thus, 

{𝓍} =  Е − 𝐶𝑙({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})) = {𝓍} ⋃ Е − 𝐷({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß −

𝐷({𝜘})).      

Therefore, Е − 𝐷({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐷({𝓍})) = ∅. 

(𝒄) ⟹ (𝒃)Let Е − 𝐷({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐷({𝜘})) = ∅, for each 𝓍 ∈ 𝒳.   

Since, Е − 𝐶𝑙({𝓍}) (𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍}))

= {𝓍} ⋃ Е − 𝐷({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐷({𝜘})). 

Thus, Е − 𝐶𝑙({𝓍}) (𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})) = {𝓍}  𝑖𝑓𝑓{𝓍} 𝑖𝑠 Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

 closed set.   

(𝒂) ⟹ (𝒄) Assume that 𝒳 is an  𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯1 − 𝑆𝑝𝑎𝑐𝑒 and suppose that , 

 Е − 𝐷({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐷({𝜘})) ≠ 𝜑 for some 𝓍 ∈ 𝒳, 𝑡ℎ𝑒𝑛 ∃ 𝑦 ∈ Е − 𝐷({𝓍}) 

(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐷({𝜘})) and (𝓍 ≠ 𝓎).  Since, 𝒳 is an  𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯1

− 𝑆𝑝𝑎𝑐𝑒 ,  

𝑠𝑜 ∃ Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −  open set 𝒰 (𝑠. 𝑡) 𝓎 ∈ 𝒰 𝑎𝑛𝑑 𝓍 ∉ 𝒰 which implies, 𝒰 ∩ {𝓍}

= ∅,   

and thus 𝓎 ∉ Е − 𝐷({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐷({𝜘})), which a contradiction with the 

 assumption.  Hence, ∀ 𝓍 ∈ 𝒳, Е − 𝐷({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐷({𝓍})) = ∅.  

(𝒄) ⟹ (𝒂)Let Е − 𝐷({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐷({𝓍})) = ∅, ∀ 𝓍 ∈ 𝒳, consequently,  

Е − 𝐶𝑙({𝓍}) (𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})) = {𝓍} ∪ Е − 𝐷({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐷({𝓍})) =

 {𝓍}.  Which implies, {𝓍} is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

 closed set and thus via (part (a) & (𝑏)),   

we have 𝒳 is an  𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯1 − Space. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟗: If 𝒳 is a topological space, then the followingproperties are equivalent:  

a) 𝒳 is an  𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯2 − 𝑆𝑝𝑎𝑐𝑒.  

b) If 𝓍 ∈ 𝒳, then ∀ (𝓍 ≠ 𝓎), ∃ an Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

 open set 𝒰 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝓍 (𝑠. 𝑡),  

 𝓎 ∉ Е − 𝐶𝑙({ 𝒰}) (𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝒰})).   

𝑷𝒓𝒐𝒐𝒇: (𝒂) ⟹ (𝒃) since 𝒳 is an𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯2 − 𝑆𝑝𝑎𝑐𝑒, so ∀  



Other generalized forms of separation Axioms in Topological Spaces via E-open and δ-ß-open sets PJAEE, 17 (9) (2020)  

3894 

  (𝓍 ≠ 𝓎) ∃ Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −  open sets 𝒰 & 𝑉  such that 𝓍 ∈ 𝒰 and 𝓎 ∈

𝑉 𝑎𝑛𝑑 𝒰 ⋂ 𝒱 = ∅.   

Thus, 𝓍 ∈ 𝒰 ⊆ 𝒳 ∖ 𝒱, put 𝒳 ∖ 𝒱 = ℱ, then ℱ is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − closed set, 𝒰

⊆ ℱ 𝑎𝑛𝑑 𝓎 

∉ ℱ ⟹ 𝓎 ∉ ∩ {ℱ: ℱ is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − closed set and 𝒰 ⊆ ℱ} 

 = Е − 𝐶𝑙({ 𝒰}) (𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝒰})). 

  (𝒃) ⟹ (𝒂)Suppose that 𝓍, 𝓎 (𝓍 ≠ 𝓎) ∈

𝒳, by supposition, there exists Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −   

  open set 𝒰 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝓍  such that 𝓎 ∉ Е − 𝐶𝑙({ 𝒰})(𝑟𝑒𝑠𝑝. 𝛿 − ß −

𝐶𝑙({𝒰})). Hence,  

  𝓎 ∈ 𝒳 ∖ Е − 𝐶𝑙({ 𝒰})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝒰})) which is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

 open and   

  𝓍 ∉ 𝑋 ∖ (Е − 𝐶𝑙({ 𝒰})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝒰}))). As well as,  

 𝒰⋂(𝑋 ∖ Е − 𝐶𝑙({ 𝒰})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝒰}))) = ∅. So, 𝒳 is   𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß) −

𝒯2 − 𝑆𝑝𝑎𝑐𝑒.,  

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟑. 𝟏𝟎: Let(𝒳, 𝒯) be a topological space and 𝒜 ⊆

𝒳. Then, the intersection of   

all Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −  open subsets of 𝒳 containing 𝒜 is called the 

  Е − 𝑘𝑒𝑟𝑛𝑎𝑙 (𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟𝑛𝑎𝑙) of 𝒜 and it’s denoted via   

 Е − 𝑘𝑒𝑟(𝒜)(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟(𝒜)) 𝑜𝑓 𝒜 (𝑖. 𝑒): 

Е − 𝑘𝑒𝑟(𝒜)(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟(𝒜)) = ∩ {𝒰 ∈ 𝐸𝛴(𝒳)(𝑟𝑒𝑠𝑝. 𝛿 − ß𝛴(𝒳)): 𝒜

⊆ 𝒰}.  

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟏𝟏: Let (𝒳, 𝒯) be a topological space and 𝓍 ∈ 𝒳. then,  

𝓎 ∈ Е − 𝑘𝑒𝑟({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟({𝓍}) 𝑖𝑓𝑓𝓍

∈ Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎})). 

𝑷𝒓𝒐𝒐𝒇: Suppose that 𝓎 ∉ Е − 𝑘𝑒𝑟({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟({𝓍}). So,  

 there exists Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −  open set 𝒰 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝓍 (𝑠. 𝑡) 𝓎

∉ 𝒰. Thus we obtain,   

𝓍 ∉ Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎})). 

In the same method we can prove the converse case. 

  𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟏𝟐: Let 𝒜 𝑏𝑒 𝑎 𝑠𝑢𝑏 𝑠𝑒𝑡 𝑜𝑓a space𝒳. Then,  

Е − 𝑘𝑒𝑟(𝒜)(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟(𝒜)) = {𝓍 ∈ 𝒳: Е − 𝐶𝑙({𝓍}) 

(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})) ∩ 𝒜 ≠ ∅}. 

𝑷𝒓𝒐𝒐𝒇: Let 𝓍 ∈ Е − 𝑘𝑒𝑟(𝒜)(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟(𝒜) and  

Е − 𝐶𝑙({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})) ∩ 𝒜 = ∅.  Therefore, 

𝓍 ∉ 𝒳 ∖ (Е − 𝐶𝑙({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍}))), Which is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −  open  

containing 𝒜. This case is not possible, since 𝓍 ∈ Е − 𝑘𝑒𝑟(𝒜)(𝑟𝑒𝑠𝑝. 𝛿 − ß −

𝑘𝑒𝑟(𝒜).  

 𝑠𝑜, Е − 𝐶𝑙({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})) ∩ 𝒜 ≠ ∅. Now assume that, 𝓍 ∈

𝒳 such that.  

 Е − 𝐶𝑙({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})) ∩ 𝒜 = ∅, and𝓍

∉ Е − 𝑘𝑒𝑟(𝒜)(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟(𝒜)). 
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 𝑆𝑜, there exists an Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −  open set𝒰 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝒜 𝑎𝑛𝑑 𝓍 ∉ 𝒰.   

 Let 𝓎 ∈  Е − 𝐶𝑙({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})) ∩ 𝒜. Thus,  

 𝒰 is anЕ (𝑟𝑒𝑠𝑝. 𝛿 − ß)

− Neighbourhood of 𝓎 which does not contain 𝓍. Hence via this  

  contradiction we obtain, 𝓍 ∈ Е − 𝑘𝑒𝑟(𝒜)(𝑟𝑒𝑠𝑝. 𝛿 − ß −

𝑘𝑒𝑟(𝒜))and this is the request.  

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟏𝟑: For the subsets 𝒜 𝑎𝑛𝑑 ℬ of a space(𝒳, 𝒯), the following properties hold

: 

a) 𝒜 ⊆ Е − 𝑘𝑒𝑟(𝒜)(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟(𝒜)). 

b) 𝐼𝑓𝒜 ⊆ 𝐵 ⟹ Е − 𝑘𝑒𝑟(𝒜)(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟(𝒜)) ⊆ Е − 𝑘𝑒𝑟(ℬ)(𝑟𝑒𝑠𝑝. 𝛿 −

ß − 𝑘𝑒𝑟(ℬ))  

c) If 𝒜 is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −  open of 𝒳, then 𝒜 = Е − 𝑘𝑒𝑟(𝒜)(𝑟𝑒𝑠𝑝. 𝛿 − ß −

𝑘𝑒𝑟(𝒜)).   

d) Е − 𝑘𝑒𝑟(Е − 𝑘𝑒𝑟(𝒜)){𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟(𝛿 − ß − 𝑘𝑒𝑟(𝒜))} = Е −

𝑘𝑒𝑟(𝒜)(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟(𝒜)). 

𝑷𝒓𝒐𝒐𝒇: The proof of sections (𝐚), (𝐛)and (𝐜), are immediately consequences of  

definition(𝟑. 𝟏𝟎). Now we prove section(𝐝), first by sections (𝐚) and (𝐛) we have:    

Е − 𝑘𝑒𝑟(𝒜)(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟(𝒜)) 

⊆ Е − 𝑘𝑒𝑟(Е − 𝑘𝑒𝑟(𝒜)){𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟(𝛿 − ß − 𝑘𝑒𝑟(𝒜))}. 

If 𝓍 ∉ Е − 𝑘𝑒𝑟(𝒜)(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟(𝒜)). 𝑆𝑜 ∃ 𝒰 ∈ 𝐸𝛴(𝒳) (𝑟𝑒𝑠𝑝. 𝛿 −

ß𝛴(𝒳)) (s. t)  

  𝒜 ⊆ 𝒰 𝑎𝑛𝑑 𝓍 ∉ 𝒰. Thus, Е − 𝑘𝑒𝑟(𝒜)(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟(𝒜)) ⊆

𝒰, and so we obtain:  

𝓍 ∉ Е − 𝑘𝑒𝑟(Е − 𝑘𝑒𝑟(𝒜)){𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟(𝛿 − ß − 𝑘𝑒𝑟(𝒜))}. Therefore,  

Е − 𝑘𝑒𝑟(Е − 𝑘𝑒𝑟(𝒜)){𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟(𝛿 − ß − 𝑘𝑒𝑟(𝒜))} = Е −

𝑘𝑒𝑟(𝒜)(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟(𝒜)). 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟏𝟒: The following properties areequivalent for any two distinct points 𝓍 and 𝓎 

in a topological space(𝒳, 𝒯):  

a) Е − 𝑘𝑒𝑟({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟({𝓍}) ≠ Е − 𝑘𝑒𝑟({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß −

𝑘𝑒𝑟({𝓎})). 

b) Е − 𝐶𝑙({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})) ≠ Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎}))  

𝑷𝒓𝒐𝒐𝒇: (𝒂) ⟹ (𝒃)Suppose that  Е − 𝑘𝑒𝑟({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟({𝓍})

≠ Е − 𝑘𝑒𝑟({𝓎}) 

(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟({𝓎})). So there exists a point 𝓏 ∈ 𝒳such that  

∈ Е − 𝑘𝑒𝑟({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟({𝓍}) and 𝓏

∉ Е − 𝑘𝑒𝑟({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟({𝓎})). 

Since, 𝓏 ∈ Е − 𝑘𝑒𝑟({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟({𝓍}). Consequently that , 

{𝓍} ⋂ Е − 𝐶𝑙({𝓏})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓏})) ≠ ∅ ⟹ 𝓍

∈ Е − 𝐶𝑙({𝓏})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓏})). 

By using, 𝓏 ∉ Е − 𝑘𝑒𝑟({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟({𝓎})). We obtain,  



Other generalized forms of separation Axioms in Topological Spaces via E-open and δ-ß-open sets PJAEE, 17 (9) (2020)  

3896 

{𝓎} ⋂ Е − 𝐶𝑙({𝓏})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓏})) = ∅. Since𝜘 ∈ Е − 𝐶𝑙({𝓏})(𝑟𝑒𝑠𝑝. 𝛿 −

ß − 𝐶𝑙({𝓏})).  

𝑆𝑜, Е − 𝐶𝑙({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})) ⊆ Е − 𝐶𝑙({𝓏})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓏})), and 

{𝓎} ⋂ Е − 𝐶𝑙({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})) = ∅. Thus, it follows that  

Е − 𝐶𝑙({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍}))

≠ Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎})). Therefore, 

Е − 𝑘𝑒𝑟({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟({𝓍})

≠ Е − 𝑘𝑒𝑟({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟({𝓎})). implies that,  

Е − 𝐶𝑙({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})) ≠ Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎})). 

(𝒃) ⟹ (𝒂)Assume that, Е − 𝐶𝑙({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})) ≠ Е − 𝐶𝑙({𝓎}) 

(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎})). So thereexists a point  𝓏 ∈ 𝒳 such that,  

𝓏 ∈ Е − 𝐶𝑙({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})) and 𝓏 ∉ Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß −

𝐶𝑙({𝓎})).  

Then, there exists an Е (𝑟𝑒𝑠𝑝. 𝛿 − ß)

− open set containing 𝓏 and 𝓍  but not 𝓎, namely,  

𝓎 ∉ Е − 𝑘𝑒𝑟({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟({𝓍})), and therefore  

Е − 𝑘𝑒𝑟({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟({𝓍}) ≠ Е − 𝑘𝑒𝑟({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝑘𝑒𝑟({𝓎})). 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟏𝟓: If 𝑓: (𝒳, 𝒯) ⟶ (𝒴,  𝒯∗) is an injective Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

continuous   

mapping and 𝒴 is 𝒯𝑖 − 𝑠𝑝𝑎𝑐𝑒, then 𝒳 is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯𝑖

− space, where (𝑖 = 0, 1, 2). 

𝑷𝒓𝒐𝒐𝒇: Suppose that𝓍, 𝓎 (𝓍 ≠ 𝓎) ∈ 𝒳, since 𝑓 is injective, then 𝑓(𝓍) ≠

𝑓(𝓎) in 𝒴.   

But 𝒴 is 𝒯0 − space, then there exist an open set 𝒰 such that 𝑓(𝓍) ∈ 𝒰, 𝑓(𝓎) ∉

𝒰 𝑂𝑅    

𝑓(𝓎) ∈ 𝒰, 𝑓(𝓍) ∉ 𝒰, since 𝑓 isЕ (𝑟𝑒𝑠𝑝. 𝛿 − ß)

− continuous, so𝑓−1(𝒰) is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − 

   open set of 𝒳 such that: 𝓍 ∈ 𝑓−1(𝒰), 𝓎 ∉ 𝑓−1(𝒰)𝑜𝑟 𝓎 ∈ 𝑓−1(𝒰), 𝓍 ∉

𝑓−1(𝒰). So    

  𝒳 is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯0 − space.  

The prove of other spaces such as  𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß)−𝒯1 − 𝑆𝑝𝑎𝑐𝑒 𝑎𝑛𝑑 𝐸(𝑟𝑒𝑠𝑝. 𝛿 −

ß)−𝒯2 − 𝑆𝑝𝑎𝑐𝑒  is similar to the proof of theorem (𝟑. 𝟏𝟓) thus omitted. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟏𝟔: Let 𝑓: (𝒳, 𝒯)

⟶ (𝒴,  𝒯∗) be injective Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − Irresolute map  

 and 𝒴 is  Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯𝑖 − space, then 𝒳 is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯𝑖 −

space, (𝑖 = 0, 1, 2). 

𝑷𝒓𝒐𝒐𝒇: Assume that𝓍, 𝓎 (𝓍 ≠ 𝓎) ∈ 𝒳, since 𝑓is injective, then 𝑓(𝓍) ≠

𝑓(𝓎) in 𝒴.    

But 𝒴 is an Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯2 − space, so there exist two disjoint   

Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −  open sets 𝒰 𝑎𝑛𝑑 𝒱 such that 𝑓(𝓍) ∈ 𝒰 and 𝑓(𝓎) ∈ 𝒱.  

Now, by usingЕ (𝑟𝑒𝑠𝑝. 𝛿 − ß) − Irresoluteof 𝑓 we obtain,  

𝑓−1(𝒰) 𝑎𝑛𝑑 𝑓−1(𝒱) areЕ (𝑟𝑒𝑠𝑝. 𝛿 − ß) −  openset of𝒳 such that:   
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𝓍 ∈ 𝑓−1(𝒰), 𝓎 ∈ 𝑓−1(𝒱) 𝑎𝑛𝑑 𝑓−1(𝒰) ⋂ 𝑓−1(𝒱) = ∅. So, 𝒳 is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

𝒯2 − 𝑆𝑝𝑎𝑐𝑒.  

The prove of other spaces such as 𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß)−𝒯0

− Space and 𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß)−𝒯1 − 

  Space is similarto the proof of theorem (𝟑. 𝟏𝟔) thus omitted. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟏𝟕: If 𝑓: (𝒳, 𝒯)

⟶ (𝒴,  𝒯∗) is bijective Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − open mapping  

and 𝒳 is 𝒯𝑖 − 𝑠𝑝𝑎𝑐𝑒, then 𝒴 isЕ (𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯𝑖 − space, where (𝑖 = 0, 1, 2).  

𝑷𝒓𝒐𝒐𝒇: Let 𝓎1, 𝓎2 (𝓎1 ≠ 𝓎2) ∈ 𝒴. since 𝑓 is bijective, so there exist 𝓍1,

𝓍2 (𝓍1 ≠ 𝓍2) ∈ 𝒳.   such that 𝑓(𝓍1) = 𝓎1 and 𝑓(𝓍2) =

𝓎2. Since 𝒳 is 𝒯2, then there exist two disjoint open sets 

𝒰 𝑎𝑛𝑑 𝒱 𝑜𝑓 𝒳  such that 𝓍1 ∈ 𝒰 and 𝓍2 ∈ 𝒱. Since 𝑓 is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

open mapping,   

then𝑓(𝒰) and 𝑓(𝒱) areЕ (𝑟𝑒𝑠𝑝. 𝛿 − ß) − open sets of 𝒴 with 𝓎1 ∈ 𝑓(𝒰) and 𝓎2 ∈

𝑓(𝒱).   

Therefore, 𝒴 isЕ (𝑟𝑒𝑠𝑝. 𝛿 − ß) − 𝒯2 − 𝑆𝑝𝑎𝑐𝑒. 

  The prove of other spaces such as 𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß)−𝒯0 − Space and 𝐸(𝑟𝑒𝑠𝑝. 𝛿 −

ß)−𝒯1 −  Space is similar to the proof of theorem (𝟑. 𝟏𝟕) thus omitted. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟏𝟖:  An 𝐸 (𝑟𝑒𝑠𝑝. 𝛿 − ß)−𝒯0 − Space is a topological property.  

𝑷𝒓𝒐𝒐𝒇: Suppose that, 𝑓: (𝒳, 𝒯) ⟶ (𝒴,  𝒯∗) is an 𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß) −

Homeomrphism, and 𝓍, 𝓎 ∈ 𝒳 such that(𝓍 ≠ 𝓎), since 𝑓 is injective, so 𝑓(𝜘) ≠

𝑓(𝑦). Since 𝒳 is  

𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß)−𝒯0 − Space, ⟹ ∃ anЕ (𝑟𝑒𝑠𝑝. 𝛿 − ß) − open set 𝒰  such that 𝓍 ∈

𝒰, 𝓎 ∉ 𝒰.   

Since 𝑓 is strongly – Е(𝑟𝑒𝑠𝑝. strongly – 𝛿 − ß) − open then, 

 𝑓(𝒰) is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − open set in 𝒴 such that 𝑓(𝜘) ∈ 𝑓(𝒰), 𝑓(𝑦)

∉ 𝑓(𝒰). Thus 𝒴 is 

𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß)−𝒯0 − Space. 

  𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟏𝟗: An 𝐸 (𝑟𝑒𝑠𝑝. 𝛿 − ß)−𝒯1 − Space is atopological property.  

𝑷𝒓𝒐𝒐𝒇: Suppose that, 𝑓: (𝒳, 𝒯) ⟶ (𝒴,  𝒯∗) is an𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß) −

Homeomrphism, and 𝓍, 𝓎 ∈ 𝒳 such that(𝓍 ≠ 𝓎), since 𝑓 is injective, so 𝑓(𝓍) ≠

𝑓(𝓎). Since 𝒳 is  

𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß)−𝒯1 − Space,

⟹ ∃ two Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − open sets 𝒰 and 𝑉such that  

 𝓍 ∈ 𝒰 & 𝑦 ∉ 𝑈 & 𝑦 ∈ 𝑉& 𝑥

∉ 𝑉. Since 𝑓 is strongly – Е(𝑟𝑒𝑠𝑝. strongly – 𝛿 − ß) − open then, 

𝑓(𝒰) and 𝑓(𝒱) are Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − open set in 𝒴such that: 

 𝑓(𝓍) ∈ 𝑓(𝒰), 𝑓(𝓎) ∉ 𝑓(𝒰) and 𝑓(𝓍) ∉ 𝑓(𝒱), 𝑓(𝓎) ∈ 𝑓(𝒱). Thus,  

𝒴 is 𝐸 (𝑟𝑒𝑠𝑝. 𝛿 − ß)−𝒯1 − Space. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟐𝟎:  An 𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß)−𝒯2 − Space is a topological property.   

𝑷𝒓𝒐𝒐𝒇: Assume that, 𝑓: (𝒳, 𝒯) ⟶ (𝒴,  𝒯∗) is an𝐸 (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

Homeomrphism, and 𝓍, 𝓎 ∈ 𝒳 such that(𝓍 ≠ 𝓎), since 𝑓 is injective, so 𝑓(𝓍) ≠

𝑓(𝓎). Since 𝒳 is   
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𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß)−𝒯2 − Space,

⟹ ∃ two disjointЕ (𝑟𝑒𝑠𝑝. 𝛿 − ß) − open sets 𝒰 and 𝒱  such that  

𝓍 ∈ 𝒰 and 𝓎 ∈ 𝒱 . Since 𝑓 is strongly – Е (𝑟𝑒𝑠𝑝. strongly – 𝛿 − ß) − open then, 

𝑓(𝒰) and 𝑓(𝒱) are two disjoint Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − open sets in 𝒴such that: 

 𝑓(𝓍) ∈ 𝑓(𝒰) 𝑎𝑛𝑑 𝑓(𝓎) ∈ 𝑓(𝒱) . Thus, 𝒴 is 𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß)−𝒯2 − Space. 

  

4. 𝐅𝐔𝐍𝐃𝐀𝐌𝐄𝐍𝐓𝐀𝐋 𝐏𝐑𝐎𝐏𝐄𝐑𝐓𝐈𝐄𝐒 𝐎𝐅 Е (𝒓𝒆𝒔𝒑. 𝜹 − ß) − 𝐑𝐄𝐆𝐔𝐋𝐀𝐑𝐈𝐓𝐘 𝐀𝐍𝐃  Е (𝒓𝒆𝒔𝒑. 𝜹 −

ß) − 𝐍𝐎𝐑𝐌𝐀𝐋𝐈𝐓𝐘   

In this part, the presentation ofЕ (𝑟𝑒𝑠𝑝. 𝛿 − ß) − Regular spaces and Е (𝑟𝑒𝑠𝑝. 𝛿 −

ß) − 

Normal spaces, and explores a portion of some important their characterizations and several 

of their fundamental properties. 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟒. 𝟏: A Topological space(𝒳, 𝒯)is said to beЕ (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

Regular space if for each closed set ℱ ⊆ 𝒳and each point 𝓍 ∈ 𝒳 such that 𝓍 ∈

𝒳\ℱ, there exist two disjoint Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − open sets 𝒰 and 𝒱such thatℱ ⊆

𝒰, 𝓍 ∈ 𝒱.   

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟒. 𝟐: For a space (𝒳, 𝒯) the following statements are equivalent:   

i) 𝒳 is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − Regular, 

ii) For each closed set ℱ ⊆ 𝒳 and 𝓍 ∈ 𝒳\ℱ, Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

open set 𝒰 such that    

 𝓍 ∈ 𝒰 ⊆ Е − 𝐶𝑙({𝒰}) (𝑟𝑒𝑠𝑝.  𝛿 − ß − 𝐶𝑙({𝒰})) ⊆ 𝒳\ℱ.   

𝑷𝒓𝒐𝒐𝒇: (𝒊) ⟹ (𝒊𝒊)Let 𝒳 be an Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − Regular space, ℱ ⊆ 𝒳and 𝓍 ∉

ℱ, there exist two disjoint Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − open sets 𝒰 𝑎𝑛𝑑 𝒱 such that𝓍 ∈

𝒰 and  

 ℱ ⊆ 𝒱 = 𝒳 \ Е − 𝐶𝑙({𝒰}) (𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝒰})). Since   

ℱ ⊆ 𝒳\Е − 𝐶𝑙({𝒰})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝒰})), soЕ − 𝐶𝑙({𝒰})(𝑟𝑒𝑠𝑝. 𝛿 − ß −

𝐶𝑙({𝒰})) ⊆ 𝒳\ℱ. Thus, 𝓍 ∈ 𝒰 ⊆ Е − 𝐶𝑙({𝒰})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝒰})) ⊆ 𝒳\ℱ.   

(𝒊𝒊) ⟹ (𝒊) Let 𝓍 ∈ 𝒳 and ℱ ⊆ 𝒳 \{𝓍} be closed set such that,  

𝓍 ∈ 𝒰 ⊆ Е − 𝐶𝑙({𝒰})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝒰}))  ⊆ 𝒳\ℱ. So  

ℱ ⊆ 𝒳 \Е − 𝐶𝑙({𝒰}) (𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝒰})), which is anЕ (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

open set and   

disjoint with 𝒰. Thus 𝒳 is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − Regular.  

 𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟒. 𝟑: Let 𝒳 be an Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

Regular space, for any two points 𝓍, 𝓎 ∈ 𝒳,   

then either: Е − 𝐶𝑙({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍}))  

= Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎}))  𝑂𝑅 

 Е − 𝐶𝑙({𝓍}) (𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})) ⋂ Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎})) = ∅. 

𝑷𝒓𝒐𝒐𝒇: Suppose that Е − 𝐶𝑙({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})) ≠ 

Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎})) then either 𝓍

∉ Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎}))  

 𝑂𝑅 𝓎 ∉  Е − 𝐶𝑙({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})). Assume that  
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𝓎 ∉  Е − 𝐶𝑙({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})). Since 𝒳 is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß)

− Regular, then  

there exists an Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − open set 𝒰 such that Е

− 𝐶𝑙({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})) 

⊆ 𝒰and 𝓎 ∈ 𝒳\𝒰. Where 𝒳\𝒰 is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −  closed and  

Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎})) ⊆ 𝒳\𝒰. Thus,  

Е − 𝐶𝑙({𝓍})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓍})) ∩ Е − 𝐶𝑙({𝓎})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝓎})) ⊆ 𝒰 ∩

(𝒳\𝒰) = ∅.  

 𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟒. 𝟒: Suppose that 𝑓: (𝒳, 𝒯) ⟶

(𝒴,  𝒯∗) is a bijective continuous and strongly  

−Е(𝑟𝑒𝑠𝑝. 𝛿 − ß) − open mapping and 𝒳 isЕ (𝑟𝑒𝑠𝑝. 𝛿 − ß)

− Regular space, then 𝒴is 

  Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − Regular. 

𝑷𝒓𝒐𝒐𝒇: Assume that  ℱ ⊆ 𝒴  is a closed set and 𝓎 ∈ 𝒴\

ℱ. Since 𝑓 is bijective continuous,   

 So 𝑓−1(ℱ) is closed of 𝒳. Put 𝑓(𝓍) = 𝓎, then 𝓍 ∈ 𝒳\

𝑓−1(𝐹). Since 𝒳 is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − 

Regular space, so there exist two disjoint Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

opensets 𝒰 𝑎𝑛𝑑 𝒱  such that   

𝓍 ∈ 𝒰 and 𝑓−1(ℱ)  ⊆ 𝒱. Since 𝑓 is bijective and strongly − Е(𝑟𝑒𝑠𝑝. 𝛿 − ß) −

open mapping    

 Therefore, 𝓎 ∈ 𝑓(𝒰) and ℱ ⊆ 𝑓(𝒱) and 𝑓(𝒰) ∩  𝑓(𝒱) = ∅. 

Thus 𝒴 is Е(𝑟𝑒𝑠𝑝. 𝛿 − ß) − Regular space. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟒. 𝟓: Let 𝑓: 𝒳

⟶ 𝒴 be an injectiveЕ (𝑟𝑒𝑠𝑝. 𝛿 − ß) − irresolute and closed 

 mapping and 𝒴 is an Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − Regular space, then 𝒳 isЕ (𝑟𝑒𝑠𝑝. 𝛿 − ß)

− Regular. 

𝑷𝒓𝒐𝒐𝒇: Suppose that  ℱ ⊆ 𝒳 is a closed set and 𝓍 ∉

ℱ. Since 𝑓 is injective closed mapping,   

so𝑓(ℱ)is closed of 𝒴 and 𝑓(𝓍) ∉ 𝑓(ℱ), thus 𝑓(𝓍)

∈ 𝒴\𝑓(ℱ). Since 𝒴 is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − 

Regular space, so there exist two disjoint Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

opensets 𝒰 𝑎𝑛𝑑 𝒱 (𝑠. 𝑡)   

 𝑓(𝓍) ∈ 𝒱 and 𝑓(ℱ) ⊆ 𝒰. Since 𝑓 is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

irresolute mapping, therefore   

ℱ ⊆ 𝑓−1(𝒰) and 𝓍 ∈ 𝑓−1(𝒱) & 𝑓−1(𝒰) ∩ 𝑓−1(𝒱) = ∅. Thus 𝒳 isЕ (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

Regular.   

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟒. 𝟔: A Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − Regular spaceis a topological property. 

𝑷𝒓𝒐𝒐𝒇: Suppose that 𝑓: (𝒳, 𝒯)

⟶ (𝒴,  𝒯∗) is 𝐸(𝑟𝑒𝑠𝑝. 𝛿 − ß) − Homeomrphism. Then 𝑓 is 

 a bijective strongly − Е(𝑟𝑒𝑠𝑝. 𝛿 − ß) − open continuous mapping. Let  ℱ ⊆

𝒴 be a closed     set and 𝓎 ∈ 𝒴\ℱ, so 𝑓−1(ℱ)is closed set of𝒳 & 𝓍 ∈ 𝑋\

𝑓−1(ℱ). Since 𝒳 is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −    
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Regular space, so there exist two disjoint Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

open sets 𝒰 𝑎𝑛𝑑 𝒱such that   𝓍 ∈ 𝒰 and 𝑓−1(ℱ)  ⊆ 𝒱. Since 𝑓 is strongly −

Е(𝑟𝑒𝑠𝑝. 𝛿 − ß) − open, then 𝓎 ∈ 𝑓(𝒰) 𝑎𝑛𝑑 ℱ ⊆ 𝑓(𝒱)  such that𝑓(𝒰) ∩ 𝑓(𝒱) =

∅. So 𝒴 is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − Regular.  

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟒. 𝟕: A Topological space(𝒳, 𝒯)is said to be Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

Normal if for each 

pair of disjoint closed sets ℱ1 𝑎𝑛𝑑 ℱ2 there exist two disjoint Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

open sets 𝒰 𝑎𝑛𝑑 𝒱 such that, ℱ1 ⊆ 𝒰, ℱ2 ⊆ 𝒱.  

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟒. 𝟖: the following statements are equivalent for a space(𝒳, 𝒯):  

i) 𝒳 is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − Normal,  

ii) For every pair of open sets 𝒰 and 𝒱 such that 𝒰 ⋃ 𝒱 = 𝒳, there exists anЕ    

(𝑟𝑒𝑠𝑝. 𝛿 − ß) − closed sets 𝒜 𝑎𝑛𝑑 ℬ such that𝒜 ⊆ 𝒰, ℬ ⊆ 𝒱 and 𝒜 ⋃ ℬ = 𝒳, 

iii) For every closed set ℱand every open set 𝐻 containing ℱ, there exists  Е (𝑟𝑒𝑠𝑝. 𝛿 −

ß) − open set 𝒰 such that, ℱ ⊆ 𝒰 ⊆ Е − 𝐶𝑙({𝒰})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝒰})) ⊆ 𝐻.  

𝑷𝒓𝒐𝒐𝒇: (𝒊) ⟹ (𝒊𝒊) Suppose that 𝒰 and 𝒱 are two open sets in Е (𝑟𝑒𝑠𝑝. 𝛿 − ß)

− Normal  

space 𝒳 (s. t) 𝒰 ⋃ 𝒱 = 𝒳. So 𝒳\𝒰 and 𝒳\𝒱 are disjoint closed sets. Since 𝒳 is    

Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − Normal space, so there exist two disjoint Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

open sets   

𝒰1 𝑎𝑛𝑑 𝒱1 such that𝒳\𝒰 ⊆ 𝒰1 𝑎𝑛𝑑 𝒳\𝒱 ⊆ 𝒱1.  Assume that 𝒜 = 𝒳\𝒰1 𝑎𝑛𝑑 𝐵 =

𝒳\𝒱1.  

Therefore, 𝒜 𝑎𝑛𝑑 𝐵 are Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − closed sets (𝑠. 𝑡) 𝒜 ⊆ 𝒰, 𝐵 ⊆

𝒱 𝑎𝑛𝑑 𝒜 ⋃ 𝐵 = 𝒳.  

(𝒊𝒊) ⟹ (𝒊𝒊𝒊) Suppose that  ℱ ⊆

𝒳  is a closed set and 𝐻 be an open set containing ℱ. So  

 𝒳\ℱ and 𝐻 are open sets such that𝒳\ℱ ⋃ 𝐻 =

𝒳. Consequently via part (𝐢𝐢) there exist   

twoЕ (𝑟𝑒𝑠𝑝. 𝛿 − ß) − closed sets 𝐾1 and 𝐾2 such that𝐾1 ⊆ 𝒳\ℱ and 𝐾2 ⊆ 𝐻 and   

𝐾1 ⋃ 𝐾2 = 𝒳. Then, ℱ ⊆ 𝒳\𝐾1 and 𝑋\𝐻 ⊆ 𝒳\𝐾2 and (𝒳\𝐾1) ⋂ (𝒳\𝐾2) = ∅.  

Let 𝒰 = 𝒳\𝐾1 and 𝒱 = 𝒳\𝐾2. Thus 𝒰 and 𝒱 are disjoint Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) −

open sets such   

that ℱ ⊆ 𝒰 ⊆ 𝒳\𝒱 ⊆ 𝐻. So ℱ ⊆ 𝒰 ⊆ Е − 𝐶𝑙({𝒰})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝒰})) ⊆ 𝐻.      

(𝐢𝐢𝐢) ⟹ (𝐢) Let ℱ1 and ℱ2be two disjoint closed sets such thatℱ1 and ℱ2 ⊆ 𝒳.  

Put 𝐻 = 𝑋\𝐹2, so ℱ1

⊆ 𝐻 where 𝐻 is an open set. Via part (𝐢𝐢𝐢) ∃ Е (𝑟𝑒𝑠𝑝. 𝛿 − ß)

− openset 

𝒰 ⊆ 𝒳  such thatℱ1 ⊆ 𝒰 ⊆  Е − 𝐶𝑙({𝒰})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝒰}))  ⊆

𝐻. Consequently that  

 ℱ2 ⊆ 𝒳\𝐻 ⊆ 𝒳\Е − 𝐶𝑙({𝒰})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝒰}))  = 𝒱. Then, there exist two   

Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − open sets 𝒰 and 𝒱 such thatℱ1 ⊆ 𝒰 𝑎𝑛𝑑 ℱ2 ⊆ 𝒱 and 𝒰 ∩ 𝒱 =

∅.   

So, 𝒳 is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − Normal. 
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𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟒. 𝟗: Let𝑓: (𝒳, 𝒯)

⟶ (𝒴,  𝒯∗) be a surjective strongly − Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − open 

continuous and Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − irresolute mapping from an Е (𝑟𝑒𝑠𝑝. 𝛿 − ß)

− Normal  

space 𝒳 onto 𝒴, then 𝒴 is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − Normal. 

 𝑷𝒓𝒐𝒐𝒇: Suppose that  ℱ ⊆

𝒴 is a closed set and 𝒜 be an open set containing ℱ. So via   

continuity of 𝑓, we get 𝑓−1(ℱ) is closed and 𝑓−1(𝒜)is open of 𝒳 (s. t)𝑓−1(ℱ)

⊆ 𝑓−1(𝒜). 

Via Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − Normality of 𝒳 and via(𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟒. 𝟖), ∃ an Е (𝑟𝑒𝑠𝑝. 𝛿 −

ß) − open   

set 𝒰 ⊆ 𝒳 (s. t) 𝑓−1(ℱ) ⊆ 𝒰 ⊆ Е − 𝐶𝑙({𝒰}) (𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝒰})) ⊆ 𝑓−1(𝒜).  

 Then, 𝑓(𝑓−1(ℱ)) ⊆ 𝑓(𝒰) ⊆ 𝑓 (Е − 𝐶𝑙({𝒰})(𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝒰}))) ⊆

𝑓(𝑓−1(𝒜)).  

Since 𝑓 is surjective strongly − Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − open andЕ (𝑟𝑒𝑠𝑝. 𝛿 − ß)

− irresolute 

mapping, so we get ℱ ⊆ 𝑓(𝒰) ⊆ Е − 𝐶𝑙({𝑓(𝒰)}) (𝑟𝑒𝑠𝑝. 𝛿 − ß − 𝐶𝑙({𝑓(𝒰)}))

⊆ 𝒜.  

So, 𝒴 is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − Normal space.  

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟒. 𝟏𝟎: Let𝑓: (𝒳, 𝒯) ⟶ (𝒴,  𝒯∗) be a bijective continuous and strongly − 

Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − open mapping from aЕ (𝑟𝑒𝑠𝑝. 𝛿 − ß)

− Normal space 𝒳 onto 𝒴, then 𝒴  

is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − Normal.  

𝑷𝒓𝒐𝒐𝒇: Assume that  ℱ1 and ℱ2 are two disjoint closed sets of 𝒴.   

Since 𝑓 is continuous, so 𝑓−1(ℱ1) and𝑓−1(ℱ2)are disjoint closed sets of 𝒳. Since 𝒳  

is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − Normal space, then there exist two disjoint Е (𝑟𝑒𝑠𝑝. 𝛿 − ß)

− open sets 

𝒰 𝑎𝑛𝑑 𝒱 such that 𝑓−1(ℱ1) ⊆ 𝒰 and 𝑓−1(ℱ2) ⊆ 𝒱. Via bijective and strongly − Е   

(𝑟𝑒𝑠𝑝. 𝛿 − ß) − openof a mapping  𝑓, we obtain ℱ1 ⊆ 𝑓(𝒰) & ℱ2

⊆ 𝑓(𝒱)& 𝑓(𝒰) ∩ 𝑓(𝒱) = ∅. 

So, 𝒴 is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − Normal space.  

  𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟒. 𝟏𝟏: Let𝑓: (𝒳, 𝒯) ⟶ (𝒴,  𝒯∗) be an injective closed and Е (𝑟𝑒𝑠𝑝. 𝛿 −

ß) − 

irresolute mapping and 𝒴 beЕ (𝑟𝑒𝑠𝑝. 𝛿 − ß)

− Normal space, then 𝒳 𝑖𝑠 Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − 

Normal.    

𝑷𝒓𝒐𝒐𝒇: Suppose that  ℱ1 𝑎𝑛𝑑 ℱ2 are two disjoint closed sets of 𝒳. Since 𝑓 is closed mapping,   

so 𝑓(ℱ1) 𝑎𝑛𝑑 𝑓(ℱ2) are disjoint closed sets of 𝒴. Since 𝒴 is Е (𝑟𝑒𝑠𝑝. 𝛿 − ß)

− Normal space, 

there exist twodisjoint Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − open sets 𝒰 𝑎𝑛𝑑 𝒱 (𝑠. 𝑡) 𝑓(ℱ1)

⊆ 𝒰 & 𝑓(ℱ2) ⊆ 𝒱. 

Via injective and Е (𝑟𝑒𝑠𝑝. 𝛿 − ß) − irresolute of a mapping  𝑓 , we obtain ℱ1 ⊆

𝑓−1(𝒰) and   
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  ℱ2 ⊆ 𝑓−1(𝒱) and 𝑓−1(𝒰) ∩ 𝑓−1(𝒱) = ∅. So, 𝒳 isЕ (𝑟𝑒𝑠𝑝. 𝛿 − ß) − Normal.   
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CONCLUSION 
“ The class of generalized open sets has an essential role in general topology, 

especially its suggestion of new separation axioms which are useful in digital 

topology. “Many topologists worldwide are focusing their researches on these topics 

Indeed a significant theme in General Topology, Real analysis and many other 

branches of mathematics concerns the variously modified forms of separation axioms 

by utilizing generalized open sets”. One of the well-known concepts and that expected 

it will has a wide applying in physics and topology and their applications is the notion 

of Е and δ-ß-open sets. “In this work we introduced and studied new generalized types 

of separation axioms namely, Е and δ-ß-separation axioms. Several fundamental 

properties concerning of these classes of generalized separation axioms are obtained. 

Furthermore, Е (resp. δ-ß)-Regularity and Е (resp. δ-ß)- Normality are investigated in 

the context of these new concepts. Also the fuzzy topological version of the concepts 

and results introduced in this paper are very important, since El-Naschie has shown 

that the notion of fuzzy topology has very important applications in quantum particle 

physics especially in related to superstring theory, string theory and 𝜀∞ theory [21, 22, 

23]”. 
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