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axioms by utilizing E -open and 8-B-open sets respectively are introduced and studied. Several of their
fundamental characterizations and their relationships with other corresponding kinds of spaces are
discussed. Moreover, New forms of Regularity and Normality namely, E (resp.5-B)-Regularity and E
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and E (resp.5-R)-Normality are established.
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1. Introduction

The class of generalized open and closed sets has an important role in general
topology and it applications, especially its suggestion new generalized of separation
axioms which are useful in digital topology. The investigation on generalization of
open and closed sets has lead to significant contribution to the theory of separation
axioms. Indeed a significant theme in General Topology, Real analysis and many
other branches of mathematics concerns the variously modified forms of separation
axioms by utilizing generalized open and closed sets.

“Furthermore, in recent literature, we find many topologists worldwide are focusing
their researches in the direction of investigating different types of separation axioms.
Some of these have been found to be useful in computer science and digital topology
[see for example [1, 2]”. Dontcheve and Ganster [1] proved that the digital line is T3/4
space but not T1. Also, Navalagi [3] introduced semi generalized- Ti spaces, i=0, 1, 2.
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In addition, in 2011, Ahu Acikgéz [4] defined two new separation axioms called
B*T1/2 and B** T1/2 spaces as applications of B*g—closed sets.

Hariwan Z. Ibrahim in [5] presented and investigated some weak of separation axioms
by using the concepts of Bc-open sets and the Bc-closure operator. Also, in the same
year Hussein A. Khaleefah[6] studied new types of separation axioms termed by,
generalized b- Ri, i= 0, 1 and generalized b-Ti, i= 0, 1, 2 by using generalized b-open
sets, Relations among these types are investigated, and several properties and
characterizations are provided.

“In addition, Regularity and Normality are important topological properties and hence
they are significance both from intrinsic interest as well as from applications view
point to obtain factorizations of Regularity and Normality in terms of weaker
topological properties”.

Many authors have studied several forms of normality and regularity [7, 8, 9, 10]
Recently, A.l. EL-Maghrabi and M.A. AL-Juhani [11] introduced and investigated a
new class of separation axioms called M-Ti-spaces, i = 0, 1, 2. Also, the M-Regularity
and the M-Normality are examined in the context of these new concepts. B. K. Tyagi
and H. V. Chauhan in [12] explained the relationships among several separation
axioms such as, p-T o,pu-T 1,u-T 2,u-T (12), p-regularity,p-normality,p-R_o,p-
R Lu-D o,u-D 1,u-T 2,u-R d,u-m o,u-weakly regular,u-R (D 6 ) ,u-R (d &) ,u-
R D,u-R _d,u-D_(D"* ) and pu-D_(d™*), in the framework of generalized topological
spaces, also they discussed the relationship of some of the above axioms with 0-
generalized topology.

As well as, in [13] S. H. Abdulwahid and A. M. F. AL. Jumaili, introduced and
studied some new types of separation axioms called, E_ ¢ (resp. [ &-R)] ¢ )-
separation axioms and some of their fundamental properties and relationships with
other types of spaces are discussed.

The main goal of the present paper is to consider and study new classes of generalized
separation axioms called,E and 3-R-separation axiomsby using E -open and 6-R-open
sets respectively. Several basic properties and preservation properties concerning of
these kinds of generalized separation axioms are presented. Also, the relationships
among these types of separation axioms and other kinds of spaces are investigated.
Furthermore,

E (resp.6-R)-Regularity and E and 3-R-Normality are studied in the context of these
new concepts. Additional, some of basic interesting properties of them are provided.

2. PRELIMINARIES

Throughout this paper, (X, T), (Y, T*) and (Z,T**)(or simply X, Y and Z) meantopological
spaces on which no separation axioms are assumed unless explicitly stated. For anysubset A
of X, the closure and interior of A are denoted by Cl(cA) and Int(cA), respectively. We recall
the following required definitions and the fundamental concepts, which will be used often
throughout this paper.
Definition 2. 1: Let (X, T') be a topological space. A subset A of X is said to be:

3888



Other generalized forms of separation Axioms in Topological Spaces via E-open and &-B-open sets PJAEE, 17 (9) (2020)

a) Regular open (resp. regular closed) [14]if A = Int(Cl(A))(resp. A =
Cl(Int(A))).
D) & — open [15] if for each x € A there exists a regular open set V such that x €
V < A. The o-interior of A is the union of all regular open sets contained in A and is
denoted by Ints(A). The subset A is called § — open [15] if A = Ints(A). A point
x € X is called a § — cluster points of A [15] if A N Int(CI(V)) # @, for each
open set V containing x. The set of all 3-cluster points of A is called the 5-closure of
A and is denoted by Cls(A).If A = Cls(A), then A is said to be § — closed [15].
The complement of § — closed set is said to be § —openset. A subset A of a
Topological space X is called § — open [15] if for each x € A there exists an open
set G such that, x € G < Int(Cl(G)) S A. The family of all § — open sets in X is
denoted by. 62 (0, 7).
Definition 2. 2: Let(X, T)be a Topological space. Then:
a) Asubset A ofaspace X is called E — open[16]if
A S Cl(6 — Int(A)) U Int(d — Cl(A)). The complement of an E

— open set is called
E — closed. The intersection of all E — closed sets containing A is called the E

— closure
of A [16] and is denoted byE — Cl(cA). The union of all £

— open sets of X contained in
A is called theE — interior[16] of A and is denoted by E — Int(A).
b) A subset A of aspace X is called § — {3 — open [17] or e* — open [18], if

A S Cl(Int(§ — CI(A ))), the complement of § — 8 — open set is called§ — 3

— closed.
The intersection of all § — 8 — closedsets containing Ais called the § — 3 —
closure of A [17] and is denoted by § — {3 — Cl(A). The union of all § — 3 —
open sets of X A is called contained in the § — 3 —

interior [17] of A and is denoted byd — 13 — Int(A).

Remark 2. 3: The family of all E — open (resp. E — closed, § — 3 — open,§ — 13 —
closed)

subsets of X containing a point x € X is denoted by EX(X, x)

(resp. EC(X, x),6 —R2(X, x),6 — RC(X, x)). The family of all E — open
(resp.E — closed,§ — 8 — open, § — 3 — closed)sets in X are denoted by EX(X,
7)

(resp. EC(X, T),6 —RE(X, T),8 —RC(X, T)).

Proposition 2.4: [16, 19] the following properties hold for a space X:

a) The Arbitrary union of any family of E — (resp.§ — 8) — open sets inX,
isan E — (resp.d — f3) — open set.

b) The Arbitrary intersection of any family of E — (resp.§ — 8) — closed sets
inX,isan E — (resp.§ — f3) — closed set.

Theorem 2. 5: [13] The following properties hold for a topological space (X, T):
a) Everyregular closed subset in a space X is § — {3 — open set.
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b) if X is regular space. Then every open setis an E and § — 2 — open set.
Remark 2.6: “We have the following figure in which the converses of implications
need not be true, see the examples in [19], [16] and [18] .

—b> open »| a-open »| Semi-open »| b-open
Regular > Pre-open B-open
open
6-open »| &-semi-open E-open —»| - f3-open

a) Figure (1): The relationships among some well-known generalized open sets
in topological spaces
3. CHARACTERIZATIONS OFE (resp.6 —13) — 7; — SPACES (i = 0,1, 2)
Our motivation in this section is to provide several characterizations and some basic
properties concerning of other kinds of separationaxioms namely, E (resp.§ —
3) —
separation axioms such as E — T — (resp.§ — R —T;),E— T3
— (resp.6 — 3 —T7;) and

E— T, — (resp.6 — 3 — 7,) — Spaces, as well as to discussion the relationships
among these kinds of spaces and other well — known spaces.

Definition 3. 1: A mapping f: (X,T) — (Y, T") is said to be:
i)E — Irresolute, [20] if f (V) is E — openin X V E — open sub — set V of Y.
ii) & — R —Irresolute, [20] if f~1(V)is§ —R —openin X V& —R —
opensetV of Y.
iii) E — open, if the image of each open set of (X, T) is E — open of (Y, T*).
iv) & — 8 — open, if the image of each open set of (X, T)is § — 8 —
open of (Y, T%).
v) E — closed, if the image of each closed set of (X, T) is E — closed of (Y, T%).
vi) & — 3 — closed, if the image of each closed set of (X, T)is§ — 18 —
closedof (Y, 7).
vii) E — continuous, [16] if f~1(V)isE —
open in X for every open subset V of Y.
viii) § — 8 — continuous, [19]if f~1(V)isé — & —
open in X V open subset V of Y.
iX) Strongly — E — open, if the image of each E — open set of X is E — open of .
X) Strongly — § — 13 — open, if the image of each § — 8 — open set of X is § —

R—
open of Y.

xi) E — Homeomrphism, if f is bijective, E — irresolute and strongly — E —
open.

Xii) 6 — 13 — Homeomrphism, if f is bijective, § — 3 — irresolute and strongly —
§ — 13 — open.
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Definition 3.2: [20]A topological space(X, T) is said to be:
a) E(resp.d —13) — T, — Space if for each distinct points x and ¢ of X, there is
E (resp.d — 8) — open set containing one of them but not the other.
b) E(resp.§ —3) —J; — Space if for each pair of distinct points x, ¢ (x # ¢) €
X, there existtwo E (resp.§ — 3) — open sets U and V such that x € U
buty &€ Uand y €V butx & V.
c) E(resp.§ —8)—17T, — Space or E(resp.5§ —R) —
Hausdorff Space if for each pair
of distinct pointsx, ¢ (x # ¢) € X, 3 two disjoint E (resp.§ — 3) —
open sets ‘U and
Vsuchthatx e Uand ¢y € V.
Theorem 3. 3: The following conditions are hold in a topological space(X, T):
a) EveryE(resp.6 —83) —T, — Spaceis E(resp.§ — 3) — T3 — Space
b) Every E(resp.d —8) — T, — Space is E(resp.§ — 3) — T, — Space
c) EveryE — 7T, — Spaceis§ — 3 —T, — Space.
d) EveryE —J; — Spaceis § — 13 —J; — Space.
e) EveryE — T, — Spaceis§ — 3 — Ty — Space.
Proof: The proof s clear it is followsdirectly from their respective definitions.
Remark 3.4: From the respective definitions, the relationships among E (resp.
—R) —
T; — spaces (i = 0,1, 2)and some other well — knowntypes of spaces shown in
the following figure:

T2- Space > T:- Space > To- Space
v A 4 A 4
E- Tz - Space > E-T:- Space > E - TO' Space
A\ 4 \ 4 A 4
6 - f3-T»- Space »| 6-f-T:-Space »| 6-B-Ty-Space

Figure (2): 1he relationships among E (resp. o-R)-7; — spaces (i = 0, 1, 2) and
some other well-known types of spaces

However noneof these implicationsis reversible as shown in the following examples.
Examples 3.5: (1) — Let X = {a, b, ¢, d} with a topology
T = {0,{a},{b},{a,b},{a,b,c} {a b,d}, X }.Then X is E — T, — Space,
but it is neither E — J; — Space nor E — T, — Space.
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(2) — Let X = {x,y,w, z}with a topology T’ =

{0, {x}, {w}, {x, 4} {x,w} {x,y,w} {x,w, 3}, X}. Then, X is§ — R — T —
Space,but it is neither § — 8 —J; — Space nor § — 8 — T, — Space.

Example 3. 6: Consider X any infinite set with the co — finite topology 7
(such that the closedsets are X and the finite subsets).

Since X \ {x}is E (resp.8 — ) — open set, therefore X is,E —J; and § — 8 —
T3 Space.
But there is no non emptyE and § — 3 —
open sets are disjoint, so X cannot be neither
E — 75 nor 6 — 3 — T, space.
Theorem 3. 7: For a space (X, T")the following properties are equivalent:
a) X isan E(resp.8 — ) — T, — Space;
D) For every two distinct points x, ¢ (x # 4) € X,

E - Cl({x})(resp.6 — R — Cl({x})) # E — Cl({y})(resp.§ — 8 — Cl({y})).
Proof: Necessity. Assume thatX is E(resp.6 —8) — T —
SpaceandV x, ¢4 (x # 4) € X, there exists an E (resp.6 — 3) —
opensetU(s.t) x €U,y U=y X\,

where X \ UisE (resp.§ — ) —
closed which does not contain x but contains 4.
Since E — Cl({y})(resp.6 — 8 — Cl({¢})) is the smallestE (resp.§ — ) —
closed set

containing ¢, thus E — Cl({y¢})(resp.6 — R — Cl({#})) € X \ U and hence

u ¢ E—Cl({y}(resp.§ — 8 — Cl({y})).
SoE—Cl({x})(resp.6 — R — Cl({x})) # E — Cl({y})(resp.5 — R — Cl({y})).
(Sufficiency), suppose that x, 4 (x # ¢) € X, and
E - Cl({x})(resp.6 — R — Cl({x})) #= E — Cl({¢})(resp.§ — 8 — Cl({y})).
Let z € X suchthatz € E — Cl({x})(resp.§ — 8 — Cl({x})) but

z2 &€ E—Cl({y}(resp.6 — R — Cl({¢})).
We prove thatx € E — Cl({¢})(resp.5 — 3 — Cl({y})). Suppose that,
x € E—Cl({y})(resp.§ — 8 — Cl({y})),
consequently{x} € E — Cl({¢})(resp.§ — 8 — Cl({y})), which implies that,
E—Cl({x})(resp.6 — R — Cl({x})) < Cl({y)})(resp. 6—R— Cl({y})) and hence
z € E—Cl({y})(resp.5 — R — Cl({y}))which is a contradiction with the fact of
z & E—Cl({y}(resp.s — 8 — Cl({¢})). Therefore, x
¢ E—Cl({yH(resp.6 — 8 — Cl({y})),

which implies that,x € X \ E — Cl({¢}) (resp. 6—R— Cl({y})). So

X\E- Cl({fy,})(resp. 6—R— Cl({y}))is anE (resp.§ — R) —

open set containing x

but not . Therefore, X is an E(resp.d — ) — I, — Space.
Theorem 3.8: Let X be a topological space. Then the following properties are equivalent:

a) Xisan E(resp.§ — ) — 7, — Space.
b) For each point x € X the singleton set {x} isE (resp.§ — 8) — closed set,
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C) For each pointx € X,E — D({x})(resp. 6—R— D({%})) = Q.
Proof:(a) = (b)Let X beE(resp.§ —8) — J; — Space.Foreach x, ¢ (x # ¢) €
X, there exists E (resp.d —3) — opensetU (s.t) y € U but x ¢
U.Consequently,y € U € X \ {x}.

Thus X \ {x} = U{U: ¢ € X \ {x}} which is the union of an E (resp.§ — R) —
open sets. Then, X \ {x}isanE (resp.6 — ) —
open set. Thus{x} is E (resp.§ — ) — closed set.
(b) = (a)Suppose that {P}is E (resp.§ — 8) — closed for each P € X.
So via supposition for each x, ¢ (x # ¢) € X, {x},{y} are E (resp.§ — ) —
closed sets.
Hence, X \ {x}, X \ {¢}are E (resp.5§ — R) — open sets

suchthat, x € X \ {¢},y € X \{y}landy € X \ {x},x ¢ X \ {x}.
Therefore, X is an E(resp.d — ) — J; — Space.

(b) = (c) Let{x} be E (resp.5 — 3) — closed set for each x € X. Thus,
{x} = E—Cl({x})(resp.8§ — R — Cl({x})) = {x} UE — D{x})(resp.5 — B —
D({x})).
Therefore, E — D({x}) (resp. 6—R— D({x})) = Q.
(¢c) = (b)LetE — D({x})(resp. 6—R— D({J{})) = @, for each x € X.
Since, E — Cl({x}) (resp.§ — 3 — Cl({«x}))

={x}UE - D({x})(resp.6 — R — D({J{})).

Thus, E — Cl({x}) (resp.§ — 8 — Cl({x})) = {«} if f{x}isE (resp.6 — R) —
closed set.
(a) = (c) Assume that X is an E(resp.§ — 3) — J; — Space and suppose that,
E—D({x})(resp.6 — R — D({x})) # ¢ for some x € X, then 3y € E — D({x})
(resp. 6—R— D({}f})) and (x # ¢). Since, X isan E(resp.d —R) — T,

— Space,
so 3 E (resp.5 — R) — openset U (s.t) 4 € U and x ¢ U which implies, U N {x}
=0,

and thus ¢ € E — D({x})(resp.5 — R — D({»})), which a contradiction with the
assumption. Hence,V x € X,E — D({x}) (resp. 6—R— D({x})) = Q.

(¢) = (a)LetE — D({x})(resp.6§ — R — D({x})) = @,V x € X, consequently,

E— Cl({x}) (resp.6 — R — Cl({x})) = {x} UE — D({x})(resp.6 — R — D({x})) =
{x}. Which implies, {x} is E (resp.§ — R) —
closed set and thus via (part (a) & (b)),

we have X is an E(resp.§ — f3) — J; — Space.

Theorem 3.9: If X is a topological space, then the followingproperties are equivalent:
a) Xisan E(resp.8 — R) — T, — Space.

b) Ifx € X,thenV (x # ¢),3anE (resp.§ — R) —

open set U containing x (s.t),

y &€ E—Cl{U}) (resp.6 — R — CL({U})).

Proof: (a) = (b) since X is anE (resp.§ —8) — T, — Space,so V
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(x #y)3E (resp.d —3) — opensets U &V suchthatx € Uand ¢y €
VandUNV = 0.
Thus,x e U S X\ V,put X \V = F,then F is E (resp.§ — ) — closed set, U
CFandy
¢F =y &n{F:FisE (resp.6 — ) — closed setand U < F}
=E - Cl({'U}) (resp.§ — R — CL({U})).
(b) = (a)Suppose thatx, ¢ (x # ¢) €
X, by supposition, there exists E (resp.§ — R) —
open set U containing x suchthaty & E — Cl({ U})(resp.§ — 3 —
Cl({U})). Hence,
y € X\ E—-Cl{U})(resp.6 — R — CL({U})) whichisE (resp.§ — ) —
open and
x &€ X\ (E-CI{U}(resp.s — 3 — CI({U}))).As well as,
UNX\E-Cl{U(resp.6 — B —CL({U}))) = 0.S0,X is E(resp.§ —R) —
J5 — Space.,
Definition 3.10: Let(X, T") be a topological space and A <
X.Then, the intersection of
allE (resp.6 — 3) — open subsets of X containing A is called the
E — kernal (resp.§ — 3 — kernal) of A and it’s denoted via
E — ker(A)(resp.8 — 18 — ker(A)) of A (i.e):
E — ker(A)(resp.6 — 3 —ker(A)) =n{U e EX(X)(resp.d — B2 (X)): A
cUu}
Theorem 3.11: Let (X,T) be a topological space and x € X.then,
y €EE —ker({x})(resp.d — 8 — ker({x}) if fx
€ E— Cl{y})(resp.6 — R — Cl({y})).
Proof:Suppose that ¢ € E — ker({x})(resp.5 — 8 — ker({x}). So,
there exists E (resp.§ — 8) — open set U containing x (s.t) ¢
¢ U. Thus we obtain,
x &E— Cl({y})(resp.& -R - Cl({y,})).
In the same method we can prove the converse case.
Theorem 3.12: Let A be a sub set ofa spaceX. Then,
E — ker(A)(resp.§ — 8 — ker(A)) = {x € X:E — Cl({x})
(resp.6 — R — Cl({x})) N A # 0}.
Proof: Letx € E — ker(A)(resp.5 — 3 — ker(A) and
E — Cl({x})(resp.8 — 8 — Cl({x})) N A = @. Therefore,
x & X\ (E—-Cl({x})(resp.5 — B — Cl({x}))), Which is E (resp.5 — 8) — open
containing A. This case is not possible, since x € E — ker(A)(resp.§ — 3 —
ker(A).
s0,E — Cl({x})(resp.5 — R — Cl({x})) N A # @.Now assume that, x €
X such that.
E— Cl({x})(resp. 6—R— Cl({x})) N A =@, andx
¢E— ker(cfl)(resp. o6—1R— ker(c/l)).
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So, there exists an E (resp.§ — 8) — open setU containing A and x & U.
Lety € E— Cl({x})(resp. 6—R— Cl({x})) N A. Thus,
U is anE (resp.d — R)
— Neighbourhood of ¢ which does not contain x. Hence via this
contradiction we obtain,x € E — ker(A)(resp.§ — 3 —
ker(A))and this is the request.
Theorem 3. 13: For the subsets A and B of a space(X, T), the following properties hold

a) A SE-—ker(A)(resp.s — R — ker(A)).
D) IfA < B = E—ker(A)(resp.§ — R — ker(A)) C E — ker(B)(resp.§ —
3 — ker(B))
C) IfAisE (resp.8 —R) — open of X,then A = E — ker(A)(resp.§ — R —
ker(A)).
d) E— ker(E — ker(cﬂ)){resp. 6—1R— ker(S - - ker(c/l))} =E-—
ker(A)(resp.5 — 3 — ker(A)).
Proof: The proof of sections (a), (b)and (c), are immediately consequences of
definition(3.10). Now we prove section(d), first by sections (a) and (b) we have:
E — ker(A)(resp.§ — 8 — ker(A))
CE- ker(E — ker(c/l)){resp. o6—R— ker(S —R— ker(c/l))}.
Ifx &€ E—ker(A)(resp.6 —R —ker(A)).So3IU € EX(X) (resp.d —
BX(X)) (s.t)
A S Uand x ¢ U. Thus,E — ker(A)(resp.§ — 8 — ker(A)) S

‘U, and so we obtain:
x¢E— ker(E — ker(c/l)){resp. 6—1R— ker(5 - - ker(c/l))}. Therefore,
E — ker(E — ker(A)){resp.5 — R — ker(§ — 8 — ker(A))} =E —
ker(A)(resp.5 — 15 — ker(A)).
Theorem 3. 14: The following properties areequivalent for any two distinct points x and ¢
in a topological space(X,T):
a) E—ker({#})(resp.6 — R — ker({x}) # E — ker({¢})(resp.§ — 3 —
ker({y}).
b) E-—Cl({x})(resp.6 — R — Cl({x})) # E — Cl({y})(resp.§ — R — Cl({y}))
Proof: (a) = (b)Suppose that E — ker({x})(resp.5 — 8 — ker({x})

# E—ker({y})
(resp.8 — R — ker({¢})). So there exists a point z € X'such that
€ E — ker({x})(resp.6 — 8 — ker({x}) and 3

¢ E— ker({y})(resp.6 — R — ker({¢})).
Since, z € E — ker({x})(resp.§ — R — ker({«x}). Consequently that,
{x}NE—-Cl({z})(resp.§ —R—Cl({z})) #+ D = x

€ E—-Cl{z})(resp.d — R — Cl({z})).
By using, z € E — ker({y¢}) (resp. 6—R— ker({y})).We obtain,
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{fy} NE —Cl({z})(resp.6 — B — Cl({z})) = @.Sincex € E — Cl({z})(resp.5 —
B = Cl({z})).
S0,E — Cl({x})(resp.8 — R — Cl({x})) S E — Cl({z})(resp.s — B — Cl({z})),and
{fy} NE —Cl({x})(resp.5 — R — Cl({x})) = @.Thus, it follows that
E-— Cl({x})(resp. 6—R— Cl({x}))

+E—-Cl({y}) (resp. 66— — Cl({y)})). Therefore,
E — ker({x})(resp.§ — R — ker({x})

# E — ker({y})(resp.6 — 8 — ker({¢})).implies that,
E-— Cl({x})(resp. 6—R— Cl({x})) +E— Cl({y})(resp. 6 —R— Cl({g})).
w%z(MMmmwmmE—CK&DO%p6—E—aGM»iE—CM@D
(resp. 6—1R— Cl({y})). So thereexists a point z € X such that,
zEE—CKMDﬁ%pd—B—aGM»MMZ%E—CM@DO%nS—B—
Cl({y}))
Then, there existsan E (resp.§ — 3)

— open set containing z and x but not ¢, namely,
y%E—kmﬂﬁDﬁ%pd—B—kwﬂﬂ»amﬁ%mbm
E — ker({x})(resp.6 — 8 — ker({x}) # E — ker({y})(resp.6 — R — ker({¢})).
Theorem 3.15:If f: (X, T) — (Y, T*) is an injective E (resp.§ — R) —
continuous
mapping and Y is 7; — space,then X is E (resp.§ — 3) — T;

— space,where (i = 0,1, 2).
Proof: Suppose thatx, ¢ (x # ¢) € X, since f is injective, then f(x) #
fly)inYy.
But Y is T — space, then there exist an open set U such that f(x) € U, f(y) &
UOR
f(y) €U, f(x) & U,since f isE (resp.§ — 3)

— continuous,sof “1(U) is E (resp.§ — R) —

open set of X such that: x € f~1(U), 4 & f~1(Wory € f71(U),x ¢

f~(U).So
X is E (resp.§ — R) — T, — space.
The prove of other spaces such as E(resp.d — 8)—T; — Space and E (resp.S§ —
3)—7T, — Space is similar to the proof of theorem (3.15) thus omitted.
Theorem 3.16: Let f: (X, T)

— (Y, T) be injective E (resp.§ — 8) — Irresolute map
and Y is E (resp.§ —8) — J; — space,then X is E (resp.6 — ) — T; —
space, (i = 0,1, 2).
Proof: Assume thatx, ¢y (x # ¢) € X, since fis injective, then f(x) #
f(y)inY.
But Y is an E (resp.§ — R) — T, — space, so there exist two disjoint
E (resp.5 —3) — open sets U and V such that f(x) € U and f(¢) € V.
Now, by usingE (resp.d — 13) — Irresoluteof f we obtain,
f~Y(UW) and f~1(V) areE (resp.§ — R) — openset ofX such that:
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x€fY W,y € f W) and fH W N f1(V) = B.So, X is E (resp.§ — R) —
J5 — Space.
The prove of other spaces such as E(resp.§ — 8)—7;
— Space and E(resp.6 — R)—T; —
Space is similarto the proof of theorem (3. 16) thus omitted.
Theorem 3.17:1f f: (X, T)
— (Y, T7) is bijective E (resp.§ — £3) — open mapping
and X is J; — space, then Y isE (resp.§ — ) — T; — space,where (i = 0,1, 2).
Proof: Let ¢, ¢, (¥4 # ¢,) € Y.since f is bijective, so there exist x;,
x5 (21 # 2,) € X. such that f(x;) = ¢, and f(x,) =
4. Since X is 7;, then there exist two disjoint open sets
UandV of X suchthatx; € U and x, € V.Since f isE (resp.§ — 3) —
open mapping,
thenf (U) and f (V) areE (resp.§ — £8) — open sets of Y with ¢, € f(U) and ¢, €
f).
Therefore, Y isE (resp.§ — 8) — T, — Space.

The prove of other spaces such as E (resp.§ — R)—T, — Space and E(resp. 5 —
3)—T7; — Space is similar to the proof of theorem (3.17) thus omitted.
Theorem 3.18: An E (resp.6 — 3)—7;, — Space is a topological property.
Proof: Suppose that, f: (X,T) — (Y, T*)isan E(resp.§ — ) —
Homeomrphism, and x,¢ € X such that(x # ¢), since f is injective, so f(x) #
f(y).Since X is
E(resp.5 — R)—T, — Space,= 3 anE (resp.§ — f3) — open set U such thatx €
Uy ¢ U
Since f is strongly - E(resp. strongly - § — 8) — open then,
f(UW)isE (resp.d —8) — open set in Y such that f(x) € f(U), f(y)

¢ f(U). Thus Y is
E(resp.5 — R)—T, — Space.

Theorem 3.19: An E (resp.6 — 3)—7; — Space is atopological property.
Proof: Suppose that, f: (X,T) — (Y, T*) isanE(resp.6 — ) —
Homeomrphism, and x,4¢ € X such that(x # ¢), since f is injective,so f(x) #
f(#).Since X is
E(resp.5 — R)—T; — Space,

= Jtwo E (resp.§ — 3) — open sets U and Vsuch that
x€EU&YyEU&yYy€eV&x

¢ V.Since f is strongly - E(resp. strongly - § — f8) — open then,
f(U) and f(V) are E (resp.6 — f3) — open set in Ysuch that:
fx) € f(W),f(y) & f(Wand f(x) & f(V),f(y) € f(V).Thus,
YisE (resp.8 —18)—7; — Space.
Theorem 3.20: An E(resp.d — 8)—T, — Space is a topological property.
Proof: Assume that, f: (X,T) — (Y, T*) isanE (resp.§ — R) —
Homeomrphism, and x,4¢ € X such that(x # ¢), since f is injective,so f(x) #
f(¢).Since X is
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E(resp.d — R)—T, — Space,

= 3 two disjointE (resp.§ — 8) — open sets U and V such that
x € Uand ¢ € V .Since f is strongly - E (resp. strongly - § — 3) — open then,
f(UW) and f (V) are two disjoint E (resp.§ — 3) — open sets in Ysuch that:
f(x) € f(U) and f(y) € f(V).Thus,Y is E(resp.6 — 3)—7T, — Space.

4. FUNDAMENTAL PROPERTIES OF E (resp.é — 3) — REGULARITY AND E (resp.é —
3) — NORMALITY
In this part, the presentation ofE (resp.§ — ) — Regular spaces and E (resp. § —
B) —
Normal spaces, and explores a portion of some important their characterizations and several
of their fundamental properties.
Definition 4. 1: A Topological space(X, T)is said to beE (resp.§ — ) —
Regular space if for each closed set F € Xand each pointx € X such thatx €
X\F, there exist two disjoint  E (resp.§ — f3) — open sets U and Vsuch thatF <
U, xeV.
Theorem 4. 2: For a space (X, T") the following statements are equivalent:
1) XisE (resp.s — &) — Regular,
ii) For each closed set F € X and x € X\F,E (resp.§ — R) —
open set U such that
x €UCE-CLH{U}) (resp. § — B — CL({U})) € X\F.
Proof: (i) = (ii)Let X be an E (resp.§ — f3) — Regular space, F € Xand x ¢
F, there exist two disjoint E (resp.§ — 8) — open sets U and V such thatx €
U and
F cV=X\E—-CI{U}) (resp.d — 15 — CL({U})). Since
F € X\E - Cl({u})(resp.5 — & — CL({U})), soE — CL({U})(resp.5 — B —
Cl({U})) € X\F. Thus,x € U S E — CL({U})(resp.5 — R — CI({U})) € X\F.
(ii) = (i) Letx € X and F < X \{x} be closed set such that,
x €UCE-Cl{UY(resp.d — 18— CL({U})) S X\F.So
F € X\E - Cl({U}) (resp.§ — 3 — Cl({U})), which is anE (resp.§ — ) —
open set and
disjoint with U. Thus X is E (resp.d — f3) — Regular.
Theorem 4.3: Let X bean E (resp.§ —13) —
Regular space, for any two points x, ¢ € X,
then either: E — Cl({x})(resp.§ — 3 — Cl({«x}))
=E—Cl({y})(resp.6 — R = Cl({y})) OR
E—Cl({x}) (resp.6 — 8 — Cl({x})) NE — Cl({y})(resp.d — R — Cl({y})) = 0.
Proof: Suppose that E — Cl({x}) (resp. 6—R— Cl({x})) #*
E—-Cl({y}) (resp. 6—R— Cl({/gp})) then either x

¢ E— Cl({y})(resp.6 — R — Cl({y}))
ORy ¢ E—Cl({x}) (resp. 6—R— Cl({x})).Assume that
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y & E— Cl({x})(resp. 6—R— Cl({x})). Since X is E (resp.§ — B)
— Regular, then

there exists an E (resp.§ — 8) — open set U such that E
— Cl({x})(resp. 6—R— Cl({x}))

C Uand ¢y € X\U.Where X\U is E (resp.§ — 3) — closed and

E - Cl({y})(resp.§ — R — Cl({y})) € X\U.Thus,

E— Cl({x})(resp.6 — B — Cl({x})) N E — Cl({y})(resp.§ — B — Cl({y})) S UN
N\UW) = 0.
Theorem 4. 4: Suppose that f: (X,T) —
(Y, T) is a bijective continuous and strongly
—E(resp.§ — 13) — open mapping and X isE (resp.§ — 3)
— Regular space, then Yis
E (resp.d — 13) — Regular.
Proof: Assume that F € Y is a closed setand ¢ € Y\
F.Since f is bijective continuous,
So f~1(F) is closed of X.Put f(x) = ¢, thenx € X\
f~Y(F).Since X isE (resp.§ — R) —
Regular space, so there exist two disjoint E (resp.§ — ) —
opensets U and V such that
x € Uand f~1(F) < V.Since f is bijective and strongly — E(resp.5 — R) —
open mapping
Therefore, 4 € f(UW)andF € f(V) and f(U) N f(V) = 0.
Thus Y is E(resp.§ — 8) — Regular space.
Theorem 4.5: Let f: X
— Y be an injectiveE (resp.§ — 8) — irresolute and closed
mapping and Y is an E (resp. § — 13) — Regular space, then X isE (resp.§ — R)
— Regular.
Proof: Suppose that F € X isa closed setand x &
F.Since f is injective closed mapping,
sof (F)is closed of Y and f(x) & f(F), thus f(x)
€ Y\f(F).Since YisE (resp.6 — R) —
Regular space, so there exist two disjoint E (resp.§ — ) —
opensets U and V (s.t)
f(x) € Vand f(F) € U.Since f isE (resp.d — ) —
irresolute mapping, therefore
FcfYWandx€ f1W)&f1(U) N f~1(V) = @.Thus X isE (resp.§ — ) —
Regular.
Theorem 4.6: AE (resp.§ — 3) — Regular spaceis a topological property.
Proof: Suppose that f: (X, T)
— (Y, T*) is E(resp.§ — 8) — Homeomrphism. Then f is
a bijective strongly — E(resp.§ — 8) — open continuous mapping. Let F <
Y be a closed setand ¢y € Y\F,so f~1(F)is closed set of X & x € X\
f~Y(F).Since X isE (resp.§ — ) —
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Regular space, so there exist two disjoint E (resp.§ — ) —

open sets U and Vsuch that x € Uand f~1(F) S V.Since f is strongly —
E(resp.§ —f3) —open,then ¢ € f(U) and F € f(V) such thatf(U) N f(V) =
@.So Y is E (resp.§ — 8) — Regular.

Definition 4.7: A Topological space(X, T)is said to be E (resp.§ — ) —

Normal if for each

pair of disjoint closed sets F, and F, there exist two disjoint E (resp.§ — 3) —
open sets U and V such that,F; €U, F, €S V.

Theorem 4. 8: the following statements are equivalent for a space(X,T):

i) X isE (resp.§ — ) — Normal,
ii) For every pair of open sets U and V such that U UV = X, there exists anE
(resp.d —13) — closed sets A and B suchthatA €U, B<S Vand AU B = X,

iii) For every closed set Fand every open set H containing F, there exists E (resp.§ —
3) — open set U such that,F € U € E — CI({U}(resp.§ — R — ClL({U})) € H.
Proof: (i) = (ii) Suppose that U and V are two open sets in E (resp.§ — R)

— Normal
space X (s.t) U UV = X.So X\U and X'\V are disjoint closed sets. Since X is
E (resp.d — 8) — Normal space, so there exist two disjoint E (resp.§ — 3) —
open sets
U, and V; such thatX\U € U, and X\V € V,. Assume that A = X\U; and B =
X\V;.
Therefore, A and B are E (resp.§ — 13) — closed sets (s.t) A €U, B S
Vand AUB = X.
(ii) = (iii) Suppose that F ©
X isaclosed set and H be an open set containing F. So
X\F and H are open sets such thatX\F U H =
X.Consequently via part (ii) there exist
twoE (resp.d — 13) — closed sets K; and K, such thatK; € X'\F and K, € H and
K; UK, = X.Then,F € X\K; and X\H S X\K; and (X\K;) N (X\K;) = 0.
Let U = X\K; and V = X'\K,.Thus U and V are disjoint E (resp.§ — ) —
open sets such
that FSUCS X\VEH.SoF CcUCE-Cl{Uup)(resp.6§ —R—CL({U})) € H.
(iii) = (i) Let F, and F,be two disjoint closed sets such that¥; and ¥, < X.
Put H = X\F,,so0 F;

C H where H is an open set. Via part (iii) 3 E (resp.§ — R)

— openset
U S X suchthatF;, € UC E—Cl{{U}D(resp.6 — R - Cl({U})) <
H.Consequently that
F, € X\H € X\E — Cl({U})(resp.§ — 3 — CI({U})) = V.Then, there exist two
E (resp.5 —3) — opensets U and V such thatF; € Uand F, S VandUNV =
@.
So,X is E (resp.d — 3) — Normal.
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Theorem 4.9: Letf: (X,T)
— (Y, T*) be a surjective strongly — E (resp.§ — 8) — open

continuous and E (resp.§ — 8) — irresolute mapping from an E (resp.§ — R)
— Normal

space X onto Y, then Y is E (resp.§ — 3) — Normal.

Proof: Suppose that F €

Y is a closed set and A be an open set containing F. So via

continuity of f, we get f ~(F) is closed and f~1(A)is open of X (s.t)f ~1(F)
c f1(A).

Via E (resp.§ — ) — Normality of X and via(Theorem 4.8),3 an E (resp.d§ —

3) — open

setU S X (s.t) f7H(F) €UCSE—CLH{U}) (resp.§ — B — CL{U})) S f1(A).

Then, f(f~1(F)) € f(U) < f (E — Cl{u})(resp.5 — R — Cl({u}))) c

f(F().

Since f is surjective strongly — E (resp.§ — 3) — open andE (resp.§ — 2)
— irresolute

mapping, so we get F € f(U) € E — CL{f(W)}) (resp.§ — B — CL{F(W)]))
C A.

So,Y is E (resp. 5 — 8) — Normal space.
Theorem 4.10: Letf: (X,T) — (Y, T*) be a bijective continuous and strongly —
E (resp.d — ) — open mapping from aE (resp.§ — R)
— Normal space X onto Y, then Y
isE (resp.§ — £3) — Normal.
Proof: Assume that F; and F, are two disjoint closed sets of Y.
Since f is continuous, so f ~1(F;) andf "1 (F,)are disjoint closed sets of X. Since X
is E (resp. — 8) — Normal space, then there exist two disjoint E (resp.§ — 3)
— open sets
U and V such that f~1(F;) € U and f~1(F,) € V. Via bijective and strongly — E
(resp.§ — 8) — openof a mapping f,we obtain F; € f(U) & F,
SfM&fWNfI)=0.
So,Y is E (resp. 5 — 8) — Normal space.
Theorem 4.11: Letf: (X,7) — (Y, T*) be an injective closed and E (resp.§ —
3) —
irresolute mapping and Y beE (resp.§ — R)
— Normal space, then X is E (resp.§ — ) —
Normal.
Proof: Suppose that F; and F, are two disjoint closed sets of X. Since f is closed mapping,
so f(F,) and f(F,) are disjoint closed sets of Y. Since Y is E (resp.§ — R)
— Normal space,
there exist twodisjoint E (resp.§ — ) — opensets U and V (s.t) f(F;)
CU&KS(F,) cV.
Via injective and E (resp.§ — f3) — irresolute of a mapping f , we obtain F; <
f~1(U) and
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F, € (Y and (W) N f~1(V) = 0.S0, X isE (resp.§ — R) — Normal.
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CONCLUSION

" The class of generalized open sets has an essential role in general topology,
especially its suggestion of new separation axioms which are useful in digital
topology. “Many topologists worldwide are focusing their researches on these topics
Indeed a significant theme in General Topology, Real analysis and many other
branches of mathematics concerns the variously modified forms of separation axioms
by utilizing generalized open sets”. One of the well-known concepts and that expected
it will has a wide applying in physics and topology and their applications is the notion
of E and J-B-open sets. “In this work we introduced and studied new generalized types
of separation axioms namely, E and oJ-B-separation axioms. Several fundamental
properties concerning of these classes of generalized separation axioms are obtained.
Furthermore, E (resp. 0-R)-Regularity and E (resp. 6-1)- Normality are investigated in
the context of these new concepts. Also the fuzzy topological version of the concepts
and results introduced in this paper are very important, since EI-Naschie has shown
that the notion of fuzzy topology has very important applications in quantum particle
physics especially in related to superstring theory, string theory and £* theory [21, 22,
23]".
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