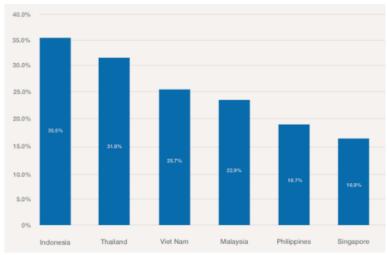
PalArch's Journal of Archaeology of Egypt / Egyptology

THE ROLE OF UNIVERSITY IN CREATING ENTREPRENEUR

Dimas Yudistira Nugraha¹, Idi Jahidi², Nur Azmi Karim³

1,2,3 Entrepreneurship Department, BINUS Business School Undergraduate Program, Bina Nusantara
University, Bandung Campus, Bandung Indonesia
E-mail: dimas.nugraha@binus.edu¹, idi.jahidi@binus.ac.id², nur.karim@binus.ac.id³


Dimas Yudistira Nugraha¹, Idi Jahidi², Nur Azmi Karim³, The Role Of University In Creating Entrepreneur—Palarch's Journal of Archaeology of Egypt/Egyptology 17(7) ISSN 1567-214X.

Keywords: Entrepreneurship education, Entrepreneurial intention, Academic curriculum, Competence of lecturing team

Abstract. The high unemployment rate in some countries is becoming a serious problem. The research is based on quantitative data obtained cross-sectionally from students studying at the Entrepreneurship Department. Empirical findings indicate that the respondent group is highly committed to the utility of entrepreneurship education for economic growth, which indicates the position and benefits of entrepreneurship at the macro level. The implication of this is providing entrepreneurship programs must take on the burden of ensuring that the lecturer used to deliver the courses highly qualified.

1. Introduction

Communities that are entrepreneurs have a huge economic impact. The effect is not only on the gross domestic product of the country, but also on the rates of poverty reduction and the rise in the per capita income of the country (Åstebro & Tåg, 2017). The number of entrepreneurs in Indonesia has increased significantly. More than a third of young people in this country are between the ages of 15 and 35 and want to work for themselves. This is not unexpected due to the trend of a series of startup development booms recently or widely referred to as new companies that have exceeded a valuation of \$1 billion. This is definitely empowering young Indonesians. Indonesians are not alone in their business success dreams. The new annual survey of the World Economic Forum on Young People's Attitudes in the countries of the Association of Southeast Asian Nations (ASEAN) showed that the ASEAN region is full of entrepreneurial spirit. In Indonesia, 34.1% of young people are currently employed on their own, far from the percentage of other ASEAN youth, while Indonesia has the highest ranking (WorldEconomicForum, 2019) Graph 1. Number of Percentage of ASEAN Young People Who Want to Become Entrepreneurs

Source: World Economic Forum (2019)

The growth of entrepreneurs in Indonesia is inseparable from the position of education, especially undergraduate education with an Economic and Business Studies program, because the Economics and Business Studies program has the potential to encourage students to become entrepreneurs after graduation. Through this program, students are taught how to start a company with available resources (Padilla-Angulo, 2019). But there is an interesting phenomenon, where most graduates rarely consider entrepreneurship as a career even though education and entrepreneurship programs have been implemented (Klapper, 2014). The education system in Indonesia tends only to transfer knowledge and students are not given the opportunity to build their business during college (Hadi, Suardi, & Cahaya, 2015).

The problem that arises is, whether students have the same perception with educational institutions, which has a strong desire or motivation to become entrepreneurs. This is important because if students do not have the intention to become entrepreneurs, it will become an obstacle in the learning process and affect the level of success as a graduate. Therefore, this intention to entrepreneurship needs to be measured and analyzed further.

In essence, this research explores the extent of the influence of the independent variables on entrepreneurship education perceptions, lecturer competencies, entrepreneurship curriculum and entrepreneurial material on the dependent variable, namely student entrepreneurial intentions. This research will provide direct benefits for learning and teaching activities in the Entrepreneurship Study Program. Getting students' views on issues around entrepreneurship education can help in delivering more effective programs in tertiary institutions.

2. Literature review

2.1. Entrepreneurship education

Research into the existence of entrepreneurs in Indonesia was first proposed by Siregar (1969). Siregar (1969) has identified several activities of the Indonesian people in entrepreneurship that have been recorded since colonialism. The diversity of Indonesian society makes entrepreneurial activity more dynamic (Siregar, 1969). Entrepreneurship is a mechanism for managing and fostering economic development, job creation and prosperity through decent enterprise. (Coulibaly, Erbao, & Mekongcho, 2017). Entrepreneurship is as a framework for the creation of creative, operational and sustainable company management (Fichter & Tiemann, 2017). Entrepreneurship is motivated and has no fear of taking risks. Therefore, the above definition implies that an entrepreneur can be seen as someone who takes risks, is

innovative, manages and manages company resources for profit (Ahunov & Yusupov, 2017; Lopera & Marchand, 2018).

Entrepreneurship education, in addition to teaching students how to start and run a business, also encourages innovative thinking, creativity and self-confidence and strong discipline. Entrepreneurship education seeks to train students to become entrepreneurs and contribute to the sustainable growth of the economy (Klofsten et al., 2018). Entrepreneurship education allows knowledge, talents, behaviors and entrepreneurial actions to be gained. Characteristics of graduates from entrepreneurship programs are complemented by creative and imaginative skills and the ability to recognize opportunities and capitalize on them by developing new companies (Piñeiro-chousa, López-cabarcos, Romero-castro, & Pérez-pico, 2019).

Behavioral aspects include the development of special skills that enable the identification of opportunities, important decision-making and ease of networking with stakeholders. Effective entrepreneurship education has three-dimensional concepts related to behavior, thinking patterns, and the creation of certain situations. Entrepreneurship education, because it involves mindset, influences attitudes, beliefs, and values because this has an important role in triggering and honing entrepreneurial intentions. The third dimension of entrepreneurship education is related to creating certain situations for the development of new ideas and new business (Padilla-Angulo, 2019). Entrepreneurship preparation enables graduates to become entrepreneurs. This is done in the course of starting and running a company (Cui, Sun, & Bell, 2019).

2.2. Student and entrepreneurship

The attitudes of students towards entrepreneurship and entrepreneurship education can be seen in three areas of entrepreneurship: cognitive, emotional and behavioral attitudes (Dheer & Lenartowicz, 2019). The beliefs, thoughts, and knowledge students have about entrepreneurship and entrepreneurship education are part of the cognitive component. The feelings and emotions that students have about entrepreneurship and entrepreneurship education are part of the affective component (Hong, Hong, Cui, & Luzhuang, 2012). Actions, reactions and ability to respond or agree are part of the behavioral aspect. Awareness of student perceptions of entrepreneurship issues is therefore critical in promoting entrepreneurial activity among students (Cadenas, Cantú, Lynn, Spence, & Ruth, 2019).

Perception is often defined as the result of thinking in which a person is confronted with a situation and that person interprets the situation to develop something that has meaning based on previous experience (Leeuwenkamp, Brinke, & Kester, 2019). Therefore, students' perceptions about matters related to entrepreneurship can reveal the extent to which they view entrepreneurship as beneficial. Most students have positive perceptions about entrepreneurship as a career choice even though with some objections due to challenges such as insufficient initial funding, inadequate skills to maintain business and fear of failure (Maresch, Harms, Kailer, & Wimmer-wurm, 2016). Perception therefore plays a significant role in inspiring students to participate in entrepreneurship. If someone has a positive view of entrepreneurship, there is a chance that the person will be interested in entrepreneurship. This is because individuals with positive perceptions of entrepreneurship are confident enough to overcome barriers (Alaref, Brodmann, & Premand, 2019).

Considering the foregoing, we argue that for entrepreneurship to be as attractive to a student, the student has to positively perceive entrepreneurship as a viable option for self-employment after graduation. Entrepreneurship education stimulates the desires of students to choose self-employment after graduation (Premand, Brodmann, Almeida, Grun, & Barouni, 2016). We

therefore hypothesis that:

H₁. There is a correlation between a positive perception of entrepreneurial education (PEE) and student entrepreneurial intention (SEI).

Although, entrepreneurship education stimulates entrepreneurship, there are certain barriers that lower entrepreneurial propensity of students most especially in emerging economies (Fatoki & Chindoga, 2011). This study assumes that the objective conditions leading to a positive understanding of entrepreneurship should include stimulating features and behaviors that push a student's career decision towards self-employment. Recent literature has increasingly connected the purpose of student entrepreneurship to the perceived importance and adequacy of course material. Improving the overall business climate and entrepreneurial education could increase the entrepreneurial intentions of the candidates (Palalić, Veland, Arnela, Alina, & Ratten, 2016). An entrepreneurial intention-motivation approach that endorses the importance and adequacy of the curriculum and course material. Essentially, they claim that doing so would improve students 'learning and realistic comprehension of the results and entrepreneurial adoption propensity (Zamberi, Rahim, & Ahmad, 2018). Optimally triggering entrepreneurial intentions requires young people to be inspired to learn how to tap into business opportunities, hence the need for a nomological network between importance and adequacy of course content and student entrepreneurship intention (SEI) (Korres, Papanis, Kokkinou, & Giavrimis, 2011). In Indonesia, the current teaching method lacks the necessary practical element to encourage entrepreneurship due to overemphasis on academic and theoretical material (Aldianto, Anggadwita, & Umbara, 2018). Advancing this position, we argue that:

H₂. There is a correlation between perceived relevance and adequacy of course content (PRACC) and student entrepreneurial intention (SEI).

Higher education institutions in Indonesia are beset with several problems which include scarcity of specialist skills leading to poor quality of teaching and learning (Ghina, 2016). This study indicates that the limitations identified hinder the ability of the teaching team to achieve the necessary graduate outcomes (knowledge, skills and attitudes) and thus may also hinder the production of entrepreneurial purpose as a learning outcome (Augustine, Emmanuel, Sunday, Inalegwu, & Ogilegwu, 2018). Lecturers does not only play a significant role when it comes to the idea formation for the students, but also for the implementation (Halberstadt, Schank, Euler, & Harms, 2019). On the basis of this, we hypothesis thus:

H₃. There is a correlation between perceived competence of lecturing team (PCLT) and student entrepreneurial intention (SEI).

3. Research methodology

This research uses quantitative research methods. Data collection techniques are carried out by distributing questionnaires to a number of students who study in entrepreneurship department in Binus University, Indonesia. The sample selection of this study was carried out with a number of certain criteria, so the sample selection technique in this study was categorized as purposive sampling. Based on the type of question, the type of questionnaire used is closed-ended question or Fixed-alternative. As for this questionnaire, attitude scale will be used which is a scale used to measure the attitudes, perceptions, and opinions of respondents. More precisely, the Likert scale will be used in five answer groups, namely: Strongly Disagree, Disagree, Moderately, Approve, and Strongly Approve. Within the conceptual framework, four main constructions are involved, namely the perception of entrepreneurship education (PEE), perceived relevance and adequacy of curriculum and course content (PRACC), perceptions of teaching team

competencies (PCLT), and student entrepreneurial intentions (SEI). The instrument used was developed based on measurement items validated from previous studies.

4. Findings

4.1 Descriptive statistics

Table 1 shows the demographics of participants in this study. More males than females participated in the study giving that the respondent population was made up of 60% of male students and 40% of female students. The participants were predominated by 4th year student in the 68%. With respect to cultural group of participants, 80 % dominated by Chinese, followed by Malay with 19%, and Indian by 1%.

Table 1

The Demographics of Respondents in this Study (n = 200).

	The Demographics of Respondents in this Study ($n=200$):				
Variables	Categories	-	Frequency	Percentage	
	Ţ.	(%)	• •	_	
	Gender	Male		120	
				60.0%	
	Female		80	40.0%	
	Year of Study	3rd Year		64	
				32.0%	
	4th Year		136	68.0%	
	Cultural Group	Chinese		160	
	•			80.0%	
		Malay		38	
		•		19.0%	
		Indian		2	
				1.0%	

Descriptive analysis was carried out to explain how the respondents rated the measurement elements on the Likert 5-point scale. Participants in this study overwhelmingly support the notion that entrepreneurial education can be used as a driving force for economic development, with a persuasive majority of survey participants agreeing that entrepreneurship education is a practice that promotes self-reliance (72.8%), promotes self-employment among people (74.5%) and enhances creative and innovative ideas (74.5%). This economic activity value of entrepreneurship education is further strengthened in the empiric evidence for other entrepreneurship education initiatives, as the majority of respondents agree that entrepreneurship education will promote the growth of trade in rural communities (78.2%), it equips students with skills in business planning (77.3%) and helps to leverage local capital. (72.7%).

Empirical evidence of perceived importance and adequacy of curriculum and course material. Participants are persuaded that the time allocated to the course in the time table is sufficient (78.2%) and that the planning of the feasibility studies is included in the course outline (67.3%). In addition, 78.1% of participants indicated that the course would introduce them to the appropriate sources of funding for entrepreneurship activities, while 61.8% per cent accepted that the creation of a business plan was part of the research. Intriguingly, while 69.1% of survey participants argue that the course covers the basic skills required for entrepreneurship, evidence for other variables suggests that there may be troubling features in the design of the curriculum and the content of the course. For example, only a very small majority agree that the course discusses how business opportunities can be found (53.9%), allows students to meet and exchange business ideas (50.4%) as well as practical experience in entrepreneurship through field research and contact with practicing entrepreneurs (51.5%).

Evidence of perceived competence of the teaching team indicates parallels with evidence of perceived importance and adequacy of curriculum and course material. The majority of participants agree with claims that lecturers are interested in teaching the course (78.8%). Encourage students to engage in entrepreneurship related events (71.1%) and launch their own company (61.8%). There is also a strong positive agreement that lecturers answer concerns that students have about entrepreneurship (66.3 %) and use a range of business cases to help provide in-depth awareness of entrepreneurship in various sectors / industry (68.7 %). Encourage students to engage in entrepreneurship related events (62.8%) and launch their own company (61.7%). There is also a strong positive agreement that lecturers answer concerns that students have about entrepreneurship (67.4%) and use a range of business cases to help provide in-depth awareness of entrepreneurship in various sectors / industry (68.5%). The data seems to suggest that a significant percentage of the students involved in this study will not be pleased with the level of competence of their lecturers.

With regard to the student's entrepreneurial intention, a significant number of participants are aspiring to become businessmen (88.3%) and will do their hardest to set up their own company (80.7%). The student will try their best to set up their own business (75.5%). Despite the failure, students will keep setting up their own business until they succeed (77.3%) and even though a lot of people don't support them in doing business, they are still going to run the business until success (80.9%).

4.2 Factors analysis

The conceptualized factors Perception of Entrepreneurship Education (PEE), Perceived Relevance & Adequacy of Curriculum and Course Content (PRACC), Perceived Competence of Lecturing Team (PCLT), and Student Entrepreneurial Education (SEI) were examined for validity and reliability in the study. For the former, Cronbach's alpha, the standard deviation and the factor mean were determined for each factor. All the Cronbach's alpha estimates realized were above the 0.70 benchmark, suggesting that they were adequate (Csikszentmihalyi & Larson, 2014). The validity of all factors was calculated by testing the degree to which the conceptualized structures are unidimensional (load on the factor). Objects used (variables) calculated for the conceptualized constructions. Each construct (factor) was analyzed by SPSS. Validity and reliability estimates have been completed in this study.

Table 2 Summary of Principal Component Analysis of the study's constructs (n = 200).

Perception of	V1		V3	V4	V5	V6	V7	V8	V9	V10	Factor
Loadings (V1)	1.000	· <u>-</u>		• •							.791
(V2)	.692	1.000									.835
(V3)	.656	.761	1.000								.875
(V4)	.487	.600	.673	1.000							.773
					1 000						
(V5)	.668	.685	.747	.747	1.000						.897
(V6)	.689	.655	.745	.651	.733	1.000					.875
(V7)	.747	.668	.656	.539	.783	.745	1.000				.853
(V8)	.469	.551	.632	.463	.578	.535	.593	1.000			.715
(V9)	.617	.696	.726	.585	.736	.720	.619	.525	1.000		.840
(V10)	.507	.578	.625	.655	.717	.729	.690	.633	.699	1.000	.826
Explained Var						inant Significance of				1.000	20
					Beterm	Significance of	122. 0000				
Eigen-Value of	PEE: 7.85	7			Kaiser-I	Meyer-Olkin Measure	of Samplin	g Adequac	ey for PEE: 0.91 (.000))	
Perceived Rele	vance and	Adequacy o	of Curriculu	ım and Cou	ırse Conten	t (F2 = PRACCC)					
	V1	V2	V3	V4	V5	V6	V7	V8	Factor Loadings		
(V1)	1.000								.838		
(V2)	.757	1.000							.863		
			1.000								
(V3)	.593	.701	1.000	1.000					.841		
(V4)	.676	.723	.804	1.000					.909		
(V5)	.574	.566	.668	.757	1.000				.808		
(V6)	.710	.647	.616	.724	.673	1.000			.845		
(V7)	.710	.658	.460	.621	.519	.639	1.00		.770		
								1.000	.893		
(V8)	640	754	797	803	691	691					
Eigen-Value of l			.797	.803		.691 nant Significance of I		.001		000)	
Explained Vari	ance of PR	6.710	88%,		Determi Kaiser-M	nant Significance of I	PRACCC: 0	.001	for PRACCC: 0.91 (0.0	000)	
Explained Vari	PRACCC:	6.710	88%, g Team (F3	= PCLT)	Determi Kaiser-M	nant Significance of I Aeyer-Olkin Measure	PRACCE: 0	.001	For PRACCC: 0.91 (0.0	000)	
Explained Vari	ance of PR	6.710	88%,		Determi Kaiser-M	nant Significance of I	PRACCC: 0	.001		000)	
Explained Variation Eigen-Value of I Perceived Con	PRACCC: petence o	6.710 Constitution of Lecturing V2	88%, g Team (F3	= PCLT)	Determi Kaiser-M	nant Significance of I Aeyer-Olkin Measure	PRACCE: 0	.001	Factor Loadings .856	000)	
Explained Variation of Description (V1)	PRACCC: upetence o V1 1.000 .685	6.710 f Lecturing V2 1.000	7 Team (F3	= PCLT)	Determi Kaiser-M	nant Significance of I Aeyer-Olkin Measure	PRACCE: 0	.001	Factor Loadings .856	000)	
Explained Variation of I	PRACCC: petence o V1 1.000 .685 .769	6.710 f Lecturing V2 1.000 .862	7 Team (F3	V4	Determi Kaiser-M	nant Significance of I Aeyer-Olkin Measure	PRACCE: 0	.001	Factor Loadings .856 .860	000)	
Explained Variation of I	PRACCC: petence o V1 1.000 .685 .769 .647	6.710 6.710 V2 1.000 .862 .737	7 Team (F3 V3 1.000 .694	V4	Determi Kaiser-M V5	nant Significance of I Aeyer-Olkin Measure	PRACCE: 0	.001	Factor Loadings .856 .860 .867	000)	
Explained Variation of I	PRACCC: 1.000 .685 .769 .647 .589	6.710 f Lecturing V2 1.000 .862 .737 .604	V3 1.000 .694 .597	= PCLT) V4 1.000 .612	V5	nant Significance of I Meyer-Olkin Measure o	PRACCE: 0	.001	Factor Loadings .856 .860 .867 .831 .783	000)	
Explained Variation of I	PRACCC: petence o V1 1.000 .685 .769 .647	6.710 6.710 V2 1.000 .862 .737	7 Team (F3 V3 1.000 .694	1.000 .612 .662	Determi Kaiser-M V5	nant Significance of I Aeyer-Olkin Measure	PRACCE: 0 of Sampling V7	.001	Factor Loadings .856 .860 .867)00)	
Explained Variation of I	PRACCC: 1.000 .685 .769 .647 .589	6.710 f Lecturing V2 1.000 .862 .737 .604	V3 1.000 .694 .597	= PCLT) V4 1.000 .612	V5	nant Significance of I Meyer-Olkin Measure o	PRACCE: 0	.001	Factor Loadings .856 .860 .867 .831 .783	000)	
Explained Variation of I	PRACCC: pretence o V1 1.000 .685 .769 .647 .589	6.710 f Lecturing V2 1.000 .862 .737 .604	V3 1.000 .694 .597 .678	1.000 .612 .662	V5 1.000 .601	nant Significance of I Meyer-Olkin Measure of V6	PRACCE: 0 of Sampling V7	.001	Factor Loadings .856 .860 .867 .831 .783	000)	
Explained Variation of I	PRACCC: V1 1.000 .685 .769 .647 .589 .630 .749 .677	6.710 f Lecturing V2 1.000 .862 .737 .604 .6556 .739 .694	Team (F3 V3 1.000 .694 .597 .678 .740	= PCLT) V4 1.000 .612 .662 .609	V5 1.000 .601 .635 .662	Meyer-Olkin Measure of I V6	PRACCC: 0 of Sampling V7 1.000 .665	Adequacy /	Factor Loadings .856 .860 .867 .831 .783 .821	000)	
Explained Variation of I	PRACCC: V1 1.000 .685 .769 .647 .589 .630 .749 .677	6.710 f Lecturing V2 1.000 .862 .737 .604 .6556 .739 .694	Team (F3 V3 1.000 .694 .597 .678 .740	= PCLT) V4 1.000 .612 .662 .609	V5 1.000 .601 .635 .662	Newer-Olkin Measure of I V6 1.000 .684 .617	PRACCC: 0 of Sampling V7 1.000 .665	Adequacy /	Factor Loadings .856 .860 .867 .831 .783 .821	000)	
Explained Variation of I	V1 1.000 .685 .769 .630 .749 .677	CACCC: 72. 6.710 F Lecturing V2 1.000 .862 .737 .604 .656 .739 .694 LT: 72.44%	Team (F3 V3 1.000 .694 .597 .678 .740	= PCLT) V4 1.000 .612 .662 .609	V5 1.000 .601 .635 .662 Determin	Newer-Olkin Measure of I V6 1.000 .684 .617	PRACCC: 0 of Sampling V7 1.000 .665 CLT: 0.002	Adequacy 1	Factor Loadings .856 .860 .867 .831 .783 .821 .868	000)	
Explained Variation (V1) (V2) (V3) (V4) (V5) (V6) (V7) (V8) Explained Variation (V3)	PRACCC: VI 1.000 .685 .769 .647 .630 .749 .677 ance of PCI	CACCC: 72. 6.710 f Lecturing V2 1.000 .862 .737 .604 .656 .739 .694 LT: 72.44%	V3 1.000 .694 .597 .678 .740 .674	1.000 .612 .662 .609	V5 1.000 .601 .635 .662 Determin	Newer-Olkin Measure of I V6 1.000 .684 .617 nant Significance of P0	PRACCC: 0 of Sampling V7 1.000 .665 CLT: 0.002	Adequacy 1	Factor Loadings .856 .860 .867 .831 .783 .821 .868	000)	
Explained Variation of Items (V1) (V1) (V2) (V3) (V4) (V5) (V6) (V7) (V8) Explained Variation of Items (V1)	PRACCC: 1.000 .685 .769 .637 .589 .630 .749 .677 nuce of PCI	CACCC: 72. 6.710 f Lecturing V2 1.000 .862 .737 .604 .656 .739 .694 LT: 72.44%	V3 1.000 .694 .597 .678 .740 .674	1.000 .612 .662 .609	V5 1.000 .601 .635 .662 Determin	Neyer-Olkin Measure of I 1.000 584 617 nant Significance of PO Meyer-Olkin Measure of Factor Loadings	PRACCC: 0 of Sampling V7 1.000 .665 CLT: 0.002	Adequacy 1	Factor Loadings .856 .860 .867 .831 .783 .821 .868)00)	
Explained Variation (V1) (V2) (V3) (V5) (V6) (V7) (V8) Explained Variation (V1)	V1 1.000 -685 -769 -647 -589 -630 -749 -677	CACCC: 72. 6.710 If Lecturing V2 1.000 .862 .737 .604 .656 .739 .694 LT: 72.44%	1.000 .694 .597 .678 .740 .674	1.000 .612 .662 .609 .631	V5 1.000 .601 .635 .662 Determin	V6 1.000 .684 .617 mant Significance of Po	PRACCC: 0 of Sampling V7 1.000 .665 CLT: 0.002	Adequacy 1	Factor Loadings .856 .860 .867 .831 .783 .821 .868	000)	
Explained Variation of Items (V1) (V2) (V3) (V4) (V5) (V6) (V7) (V8) Explained Variation of Items (V1)	V1 1.000 -685 -769 -647 -589 -630 -749 -677	CACCC: 72. 6.710 F Lecturing V2 1.000 .862 .737 .604 .656 .739 .694 LT: 72.44%	1.000 .694 .597 .678 .740 .674	1.000 .612 .662 .609 .631	V5 1.000 .601 .635 .662 Determin	V6 1.000 .684 .617 mant Significance of Po	PRACCC: 0 of Sampling V7 1.000 .665 CLT: 0.002	Adequacy 1	Factor Loadings .856 .860 .867 .831 .783 .821 .868	000)	
Explained Variation of the Conference of Con	PRACCC: 1.000 .685 .769 .647 .630 .749 .677 ance of PCI VI 1.000 .793	1.000 ACCC: 72. 6.710 1.000 ACCC: 72. 1.000 ACCC: 72.	V3 1.000 .694 .597 .678 .740 .674 (F4 = SEI	1.000 .612 .662 .609 .631	V5 1.000 .601 .635 .662 Determin	V6 1.000 .684 .617 nant Significance of Power-Olkin Measure of Meyer-Olkin Measure of Power-Olkin Measure of Powe	PRACCC: 0 of Sampling V7 1.000 .665 CLT: 0.002	Adequacy 1	Factor Loadings .856 .860 .867 .831 .783 .821 .868	0000)	
Explained Variation of I Eigen-Value of I Perceived Con (V1) (V2) (V3) (V4) (V5) (V6) (V7) (V8) Explained Variation of I Student Entre (V1) (V2) (V3)	PRACCC: 1.000 .685 .769 .647 .589 .630 .749 .677 Ince of PCI PCLT: 5.62 PCLT: 5.62 1.000 .793 .649	CACCC: 72. 6.710 If Lecturing V2 1.000 .862 .737 .604 .656 .739 .694 UT: 72.44% V2 1.000 .675	1.000 .694 .597 .678 .740 .674	1.000 .612 .662 .609 .631	V5 1.000 .601 .635 .662 Determin	V6 1.000 .684 .617 mant Significance of PO Meyer-Olkin Measure of PO Meyer-Olkin Measure of PO Meyer-Olkin Measure of PO 8887 .816	PRACCC: 0 of Sampling V7 1.000 .665 CLT: 0.002	Adequacy 1	Factor Loadings .856 .860 .867 .831 .783 .821 .868	000)	
Explained Variation of Interest Constitution (V1) (V2) (V3) (V4) (V5) (V6) (V7) (V8) Explained Variation of Interest Constitution (V1) (V1) (V2) (V3) (V4)	V1 1.000 -685 -769 -647 -589 -630 -749 -677	CACCC: 72. 6.710 F Lecturing V2 1.000 .862 .737 .604 .656 .739 .694 LT: 72.44% V2 1.000 .675 .655	88%, V3 1.000 .694 .597 .678 .740 .674 (F4 = SEI	1.000 .612 .662 .609 .631	V5 1.000 .601 .635 .662 Determi Kaiser-M	V6 1.000 .684 .617 mant Significance of Power-Olkin Measure of Meyer-Olkin Measure of Power-Olkin Measure of Pow	PRACCC: 0 of Sampling V7 1.000 .665 CLT: 0.002	Adequacy 1	Factor Loadings .856 .860 .867 .831 .783 .821 .868	000)	
Explained Variation of I Eigen-Value of I Perceived Con (V1) (V2) (V3) (V4) (V5) (V6) (V7) (V8) Explained Variation of I Student Entre (V1) (V2) (V3)	PRACCC: 1.000 .685 .769 .647 .589 .630 .749 .677 Ince of PCI PCLT: 5.62 PCLT: 5.62 1.000 .793 .649	CACCC: 72. 6.710 If Lecturing V2 1.000 .862 .737 .604 .656 .739 .694 UT: 72.44% V2 1.000 .675	1.000 .694 .597 .678 .740 .674	1.000 .612 .662 .609 .631	V5 1.000 .601 .635 .662 Determin	V6 1.000 .684 .617 mant Significance of PO Meyer-Olkin Measure of PO Meyer-Olkin Measure of PO Meyer-Olkin Measure of PO 8887 .816	PRACCC: 0 of Sampling V7 1.000 .665 CLT: 0.002	Adequacy 1	Factor Loadings .856 .860 .867 .831 .783 .821 .868	000)	
Explained Variation of Items (V1) (V2) (V3) (V4) (V5) (V6) (V7) (V8) Explained Variation of Items (V1) (V1) (V2) (V3) (V4)	PRACCC: 1.000 .685 .769 .647 .589 .630 .749 .677 Ince of PCI PCLT: 5.62 PCLT: 5.62 PCLT: 5.62 PCLT: 5.62 PCLT: 5.62 PCLT: 5.62	CACCC: 72. 6.710 I Lecturing V2 1.000 .862 .737 .604 .656 .739 .694 UT: 72.44% V2 1.000 .675 .655 .774	88%, V3 1.000 .694 .597 .678 .740 .674 (F4 = SEI	1.000 .612 .662 .609 .631	V5 1.000 .601 .635 .662 Determi Kaiser-A	V6 1.000 .684 .617 mant Significance of Power-Olkin Measure of Meyer-Olkin Measure of Power-Olkin Measure of Pow	PRACCC: 0 of Sampling V7 1.000 .665 CLT: 0.002 of Sampling	Adequacy 1	Factor Loadings .856 .860 .867 .831 .783 .821 .868)00)	

4.3 Regression analysis

Eigen-Value of SEI: 4.880

Multiple linear regression analysis was performed to measure the relationship among students' perception of entrepreneurship education (PEE), perceived relevance and adequacy of curriculum and course content (PRACC), perceived competence of lecturing team (PCLT) and student entrepreneurial intention (SEI) variables. Table 3 shows that satisfactory results at adjusted R² of 0.87, F-Change of 122.104, and Sig. F- Change of 0.000. The results suggest that perceived competence of lecturing team (PCLT) influence significantly to student

Kaiser-Meyer-Olkin Measure of Sampling Adequacy for SEI:0.88 (.000)

entrepreneurial intention (SEI). Students' perception of entrepreneurship education (PEE) influence slightly to student entrepreneurial intention (SEI). In contrast, perceived relevance and adequacy of curriculum and course content (PRACC) does not influence to student entrepreneurial intention (SEI). It suggests that hypothesis $3\ (H_3)$ is accepted, while hypotheses $1\ (H_1)$ and hypotheses $2\ (H_2)$ are rejected.

Table 3

A summary of regression analysis results (n = 200) *.

	Standardized Coeff. Beta	t-value Sig.		Collinearity Statist	Collinearity Statistics Tolerance VIF		
(Constant)		.000	1.000				
PEE	.261	1.843	.071	.120	8.357		
PRACCC	.045	.264	.793	.114	8.936		
PCLT	.664	6.055	.000	.200	5.011		

Regression model summary: adjusted R² = 0.87 F-Change = 122.104 Sig. F-Change of 0.000.

Table 4 Collinearity diagnostics results*.

Dimension Eigen-value	Eigen-value	Cond. Index	(Constant)	Variance Proportions			
			F1 PEE	F2PRACCC	F3 PCLTeam		
1	2.786	1.000	.00	.01	.01	.02	
2	1.000	1.669	.1.00	.00	.00	.00	
3	.161	4.163	.00	.25	.02	.77	
4	.053	7.222	.00	.73	.97	.20	

 $^{^*}$ Dependent Variable = Student Entrepreneurial Intention.

5. Discussion and Conclusion

The importance of recognizing the impact of entrepreneurship education on entrepreneurship by promoting innovative thinking is increasingly emphasized in literature (Klofsten et al., 2018). The results indicate that most of the respondents concurred to statements that sought to gauge the extent to which they perceived entrepreneurship education to be valuable. Of the ten items with statements on the PEE scale, the worst mean score obtained was a 2.418 associated with the statement that 'entrepreneurship education is fighting poverty,' which represents a fairly neutral stance on the part of the respondents. Positive responses were also evident for the two other independent variables of PRACC and PCLT. Given that all of the mean scores are in the range of 3 (Moderately), Approve (2), and Strongly Approve (1), it is clear that the respondents had no opposing views on the size of the things that were all favorably presented. Taken together, the cumulative impact of the three independent variables in this study explains 87% of the variance in student entrepreneurial intention (R2 = 87%). These findings reinforce the literature that recognizes the stimulating role of entrepreneurship education in entrepreneurship among young people, encourages an increase in jobs and stimulates economic development, creativity and jobs. These observations therefore re-echo the importance of entrepreneurship education to be part of the academic training provided at universities, especially in the Indonesian region, which appears to be plagued by increasing unemployment levels (Palalić et al., 2016).

Regression findings for the hypothesized relationship support the hypothesis that there is a connection between the perceived competence of the teaching team and the student's entrepreneurial purpose. Statistically, the current outcome shows that a 1%

^{*} Dependent Variable = Student Entrepreneurial Intention.

improvement in the competence of the teaching team would lead to a 0.66% improvement in the aim for student entrepreneurship. Based on this empirical finding, this study suggests a very positive combination of teaching team competence and student entrepreneurial intent (Beta = 0.664 and P = 0.00 and t = 6.055). As a result, ensuring a competent teaching team is critical to galvanizing the entrepreneurial uptake. For the perception of entrepreneurship education, a narrowly insignificant result was found at Beta = .261, P = 0.07 and t = 1.843. This may suggest that after all, PEE may have a significant (positive) impact on the SEI(Alaref et al., 2019).

With regard to the presumed importance and adequacy of the curriculum and course material, the negligible data is not surprising given the confounding statistic data in the descriptive tests. From the point of view of students ' understanding of the suitability of the academic program and the delivery components to entrepreneurial zeal, empiric insights indicate that, while students are persuaded that entrepreneurial education will inspire entrepreneurial drive, careful and intentionally coordinated design and execution is important to achieve this effect at the university where this study has been carried out (Zamberi et al., 2018). Looking closely at the descriptive evidence for PRACC (see Table 3), the evidence in this study supports the claim that one's tendency to engage in entrepreneurial activity will rely on one's experience as well as on structured teaching approaches (Palalić et al., 2016). Although not conceptually segregated (relevance and adequacy), recent information has been used to obtain a better understanding of PRACC 's effect on SEI and the roles played by relevance and adequacy of the components. Following the advocacy of the above-mentioned scholars, who praised the importance of further effort to enhance the understanding of the practicality of the curriculum content as an antecedent to the SEI, we conducted a subtle analysis of the importance and adequacy of the curriculum content. This advocacy is focused on the intuition that entrepreneurship teaching helps to galvanize the entrepreneurial drive of individuals and thus encourages innovation, skills and creativity. In order to promote this entrepreneurial push, special attention must be paid not only to the importance, but also to the adequacy of the entrepreneurial curriculum. In order to better understand the effect of PRACC on SEI, a manual analysis of the statistical results was carried out on the significance and adequacy of the features. For each of the five measurement items in the PRACC model, at least 62% of the respondents indicated positive curricula characteristics. In order to distinguish less favorable characteristics, we carefully analyzed the responses for all products, with the exception of neutral responses. Respondents suggested that items 3, 5 and 7 representing behavior that represent what the lecturers are doing and opportunities used to encourage learning and increase realistic comprehension are less optimistic at 30.6%, 32.3% and 28.6% respectively. On the basis of this data, it would seem reasonable to conclude that the respondents feel that the degree of adequacy of the curriculum content is small. A very careful design of the curriculum and course content to ensure that all the features that are crucial to galvanizing entrepreneurial knowledge and drive are taken into account and also important (Korres et al., 2011).

Thus, while the findings from this study suggest a clear tendency of participants in this study to take up entrepreneurial activity based on

their entrepreneurial education contents, it reminds of the importance of ensuring appropriately designed curriculum and competent lecturing team. Statistically, the perceived skill of the teaching team plays an important role in driving entrepreneurial adoption (Beta = 0.664 and P = 0.00 and t = 6.055). Therefore, a concerted effort must be made to maximize the entrepreneurial adoption by ensuring that a professional teaching team has an effect on key technical and motivational skills (Halberstadt et al., 2019).

6. Implications and future research

The results of this analysis have both theoretical and policy implications. The limitations of the analysis and future research are discussed

6.1 Implications

Theoretically, this research offers perspectives that strengthen the debate on entrepreneurial intent by conceptualizing and empirically evaluating the context to the entrepreneurial intent of students. Subsequently, this study provides empirical evidence that underlines the significant role that the perception of entrepreneurial education and perceived competence of the teaching team play in driving entrepreneurial intentions among students. Empirically, the more involved lecturers are in teaching the course, encouraging students to take part in business-related events, starting their own companies, etc., the more entrepreneurial aim among students. This critical relationship is consistent with current literature, which blends the expertise of the teaching team with the strong entrepreneurial purpose of students. The school system will make it easier for students to have access to entrepreneurship by encouraging the expertise of lecturers at career fairs and employer talks. This opportunity would significantly benefit university students from poor communities who lack basic knowledge on the labor market.

With regard to policy implications, administrators of educational institutions as well as government agencies responsible for higher education must seriously consider the implementation entrepreneurship as a discipline in courses taught at universities. Our findings therefore provide some basis for the further growth of entrepreneurship-related subjects in universities and colleges. In order to fully maximize entrepreneurial drive and eco-nomic growth impacts, policy makers and academic practitioners will work together to build academic curriculum and course content that integrates the necessary theoretical elements to inspire entrepreneurial drive. In order to maximize the motivational effect of entrepreneurial thought, special attention must be paid to ensuring the relevance and adequacy of curriculum and course material. Essentially, realistic opportunities that encourage learning and improve the awareness of realistic entrepreneurship must be adopted. In addition, universities must ensure that the instructional curriculum involves a professional team. The study also showed a propensity for cultural features to affect the degree to which individuals may be inspired to participate in entrepreneurial activity. This should also be taken into account by policy makers.

6.2 Limitations of the Research and Future Research Directions

Our research did not focus on any particular didactics used in the teaching of entrepreneurship, although some subjects (such as entrepreneurship education improves creative and innovative ideas; entrepreneurship education aims to minimize the number of failed enterprises; entrepreneurship education equips student with business

development skills. In addition, we accept the context-related limitation of this report. The study is based on data collected from 200 students (3rd and 4th year) at Binus University. The final limitation of this study relates to the validity and adequacy of the curriculum and course content construct where the judgment on the demarcation of the association's importance and validity components was based on descriptive proof.

Future research should therefore aim to address the limitations of this study mentioned above. For example, it may be prudent for a future study to consider the impact of different or specific tutorials on entrepreneurship. Second, this study considered the entrepreneurial intention to be largely a function of the student's perception of entrepreneurship education, relevance and adequacy of the course content and competence of the teaching team. In reality, other mediating factors such as the learning environment and facilities may impact learning outcomes either directly or through any of the relational variables measured in this study. Future research should aim to expand knowledge in these regards. Furthermore, based on limited descriptive data, this study indicated that the cultural context of individuals can influence the degree to which they may be inspired to engage in entrepreneurial activity. More illumination of the impact is important. Further to the effect viewpoint, more attention should be paid to recognizing the demarcation in terms of the significance and adequacy of the components of the PRACC build. Although a demarcation of the importance and adequacy of the components of this framework has not been conceptualized, a subtle analysis of the descriptive statistics suggests observations that should be tested in future studies. Future research that intends to lead to an understanding of the impact of courses and curriculum content (also demarcating the importance and significance of the components) as well as the perceived competence of the teaching team on the entrepreneurial intentions of students is important. In addition, on the adequacy and validity of the components of the course and the curriculum material, a direct investigation of their individual effects on the purpose of entrepreneurship using improved measuring instruments is necessary.

Acknowledgement

This work is supported by Research and Technology Transfer Office, Bina Nusantara University as a part of Penelitian Terapan Binus entitled *The Role of University in Creating Entrepreneur* with contract number: No.025/VR.RTT/IV/2020 and contract date: 6 April 2020.

References

Ahunov, M., & Yusupov, N. (2017). Risk Attitudes and Entrepreneurial Motivations: Evidence from Transition Economies. *Economics Letters*. https://doi.org/10.1016/j.econlet.2017.08.016

Alaref, J., Brodmann, S., & Premand, P. (2019). The Medium-Term Impact of Entrepreneurship Education on Labor Market Outcomes: Experimental Evidence from University Graduates in Tunisia. *Labour Economics*, 101787. https://doi.org/10.1016/j.labeco.2019.101787

Aldianto, L., Anggadwita, G., & Umbara, A. (2018). Entrepreneurship Education Program as Value Creation. *Journal of Science and Technology Policy Management*, 9(3), 296–309. https://doi.org/10.1108/JSTPM-03-2018-0024

Åstebro, T., & Tåg, J. (2017). Gross, Net, and New Job Creation by Entrepreneurs. *Journal of Business Venturing Insights*, 8, 64–70.

- Augustine, I. J., Emmanuel, E. B., Sunday, A., Inalegwu, I., & Ogilegwu, A. D. (2018). Entrepreneurship Education and Economic Growth of Benue State (2007 2016). *Journal of Business and Management*, 20(5), 62–75. https://doi.org/10.9790/487X-2005076275
- Cadenas, G., Cantú, E. A., Lynn, N., Spence, T., & Ruth, A. (2019). A Programmatic Intervention to Promote Entrepreneurial Self-Efficacy, Critical Behavior, and Technology Readiness Among Underrepresented College Students. *Journal of Vocational Behavior*, 19. https://doi.org/10.1016/j.jvb.2019.103350
- Coulibaly, S., Erbao, C., & Mekongcho, M. (2017). Economic Globalization, Entrepreneurship, and Development. *Technological Forecasting & Social Change*. https://doi.org/10.1016/j.techfore.2017.09.028
- Csikszentmihalyi, M., & Larson, R. (2014). Validity and Reliability of the Experience-Sampling Method. *Flow and the Foundations of Positive Psychology*, 1–298. https://doi.org/10.1007/978-94-017-9088-8
- Cui, J., Sun, J., & Bell, R. (2019). The Impact of Entrepreneurship Education on the Entrepreneurial Mindset of College Students in China: The Mediating Role of Inspiration and the Role of Educational attributes. *The International Journal of Management Education*, (April), 1–16. https://doi.org/10.1016/j.ijme.2019.04.001
- Dheer, R., & Lenartowicz, T. (2019). Cognitive Flexibility: Impact on Entrepreneurial Intentions. *Journal of Vocational Behavior*, 115. https://doi.org/10.1016/j.jvb.2019.103339
- Fatoki, O., & Chindoga, L. (2011). An Investigation into the Obstacles to Youth Entrepreneurship in South Africa. *International Business Research*, 4(2), 161–169. https://doi.org/10.5539/ibr.v4n2p161
- Fichter, K., & Tiemann, I. (2017). Factors Influencing University Support for Sustainable Sntrepreneurship. *Journal of Cleaner Production*. https://doi.org/10.1016/j.jclepro.2017.12.031
- Ghina, A. (2016). Relevance of Graduates' Competencies toward the Effectiveness of Entrepreneurship Education within a University Context: Case Study of SBM ITB-Indonesia. Sustainable Collaboration in Business, Technology, Information and Innovation, (10), 269–285.
- Hadi, C., Suardi, I., & Cahaya, A. (2015). Entrepreneurship and Education: Creating Business Awareness for Students in East Java Indonesia. *Procedia Social and Behavioral Sciences*, 177(July 2014), 459–463. https://doi.org/10.1016/j.sbspro.2015.02.396
- Halberstadt, J., Schank, C., Euler, M., & Harms, R. (2019). Learning sustainability entrepreneurship by doing: Providing a lecturer-oriented service learning framework. *Sustainability (Switzerland)*, 11(5). https://doi.org/10.3390/su11051217
- Hong, Z., Hong, T., Cui, Z., & Luzhuang, W. (2012). Entrepreneurship Quality of College Students Related to Entrepreneurial Education Empirical Study on Psychological and Behavioral Characteristics. 17, 1907–1913. https://doi.org/10.1016/j.egypro.2012.02.331
- Klapper, R. (2014). A role for George Kelly 's Repertory Grids in Entrepreneurship Education? Evidence from the French and Polish Context. *International Journal of Management Education*, 12(3), 407–421. https://doi.org/10.1016/j.ijme.2014.06.002
- Klofsten, M., Fayolle, A., Guerrero, M., Mian, S., Urbano, D., & Wright, M. (2018). The Entrepreneurial University as Driver for Economic Growth and Social Change. *Technological Forecasting & Social Change*, 1–10. https://doi.org/10.1016/j.techfore.2018.12.004
- Korres, G. M., Papanis, E., Kokkinou, A., & Giavrimis, P. (2011). Measuring Entrepreneurship and Innovation Activities in E.U. *Interdisciplinary Journal of Contemporary Research in Business*, 3(3), 1155–1167.
- Leeuwenkamp, K. J. G., Brinke, D. J., & Kester, L. (2019). Students 'Perceptions of Assessment Quality Related to Their Learning Approaches and Learning Outcomes. Studies in Educational Evaluation, 63, 72–82.

https://doi.org/10.1016/j.stueduc.2019.07.005

Lopera, M., & Marchand, S. (2018). Peer Effects and Risk-Taking among Entrepreneurs: Lab-in-the-Field Evidence. *Journal of Economic Behavior and Organization*, 150, 182–201. https://doi.org/10.1016/j.jebo.2018.04.011

Maresch, D., Harms, R., Kailer, N., & Wimmer-wurm, B. (2016). The Impact of Entrepreneurship Education on the Entrepreneurial Intention of Students in Science and Engineering Versus Business Studies University Programs. *Technological Forecasting & Social Change*, 104, 172–179. https://doi.org/10.1016/j.techfore.2015.11.006

Padilla-Angulo, L. (2019). Student associations and entrepreneurial intentions. *Studies in Higher Education*, 44(1), 45–58. https://doi.org/10.1080/03075079.2017.1336215

Palalić, R., Veland, R., Arnela, Đ., Alina, D., & Ratten, V. (2016). Entrepreneurial intentions of university students: a case-based study. *Journal of Enterprising Communities: People and Places in the Global Economy*, 1–31. https://doi.org/10.1108/JEC-12-2016-0046

Piñeiro-chousa, J., López-cabarcos, M. Á., Romero-castro, N. M., & Pérez-pico, A. M. (2019). Innovation, entrepreneurship and knowledge in the business scienti fi c fi eld: Mapping the research front. *Journal of Business Research*, (November). https://doi.org/10.1016/j.jbusres.2019.11.045

Premand, P., Brodmann, S., Almeida, R., Grun, R., & Barouni, M. (2016). Entrepreneurship Education and Entry into Self-Employment Among University Graduates. *World Development*, 77, 311–327. https://doi.org/10.1016/j.worlddev.2015.08.028

Siregar, A. M. (1969). Indonesian Entrepreneurs. Asian Survey, 9(5), 343–358.

WorldEconomicForum. (2019). *In Indonesia, over a third of young people want to be entrepreneurs / World Economic Forum*. Retrieved from https://www.weforum.org/agenda/2019/08/indonesia-young-people-entrepreneur/

Zamberi, S., Rahim, A., & Ahmad, N. (2018). An Evaluation of Teaching Methods of Entrepreneurship in Hospitality and Tourism Programs. *The International Journal of Management Education*, 16(1), 14–25. https://doi.org/10.1016/j.ijme.2017.11.002