
VANILLA Framework for Model Driven Re- Engineering of Declarative User Interface PJAEE, 17 (9) (2020)

7120

VANILLA Framework for Model Driven Re- Engineering of Declarative User

Interface

Alok Aggarwal,1 Smita Agarwal,2 Narendra Kumar3

1 School of Computer Science, University of Petroleum & Energy Studies, Dehradun, India, Email:

alok.aggarwal@upes.ac.in
2 Department of Computer Science, Mewar University, Chittorgarh (Raj), India, Email: smita.ag@gmail.com

3 Icfai University, Jaipur, India, drnk.cse@gmail.com

Alok Aggarwal,1 Smita Agarwal,2 Narendra Kumar3: VANILLA Framework for Model Driven Re-

Engineering of Declarative User Interface-- Palarch’s Journal of Archaeology Of Egypt/Egyptology 17(9).

ISSN 1567-214x.

Keywords—Model Driven Re-engineering, Model Transformation, Declarative User Interface, Models,

Meta-Models.

Abstract — A wide assortment of smart phone devices from different manufacturers that vary in platform,

memory, processing capability screen size, screen resolution and compatibilities to different systems is

available in today’s market. To meet the ever growing demand of accessing websites and web application

through the mobile devices, these web applications are being re-engineered to be acceptable in terms of cost

and time. The usability of these web applications is highly dependent on the user interface. In this work, a

platform independent Vanilla Framework is presented that uses model as the primary artifact. Model to model

transformation is carried out from platform specific model to platform independent model. A detailed analysis

of the existing metamodel-based transformation tools is done for the declarative model using an exhaustive

criterion. The evaluation of the chosen tools is done which are open source and have download page available

using search engine like Google Scholar and Github; like UML–RSDS, Tefkat, JTL, PTL etc. The analysis is

performed over ten different parameters like language, model query, compatibility, cardinality etc. Based on

the result of the evaluation and extensive investigation, a PIM for declarative user interface is proposed. Also

the framework for model transformation using PIM model for declarative user interface has been put forward.

This framework is then applied to five of the popular libraries such as SWING, HTML5, and more recent

libraries of Android and Python-Tkinter. Results show that all selected tools produce domain specific target

model which mostly transform PIM to PSM and none produces domain independent target model transforming

a PSM into PIM.

Keywords—Model Driven Re-engineering, Model Transformation, Declarative User Interface, Models, Meta-

Models

VANILLA Framework for Model Driven Re- Engineering of Declarative User Interface PJAEE, 17 (9) (2020)

7121

1. Introduction

Technology landscape is changing at a rapid pace with every gone year. About sixty

percent of the world population accounting about 4.58 billion people are on-line today and

the way how web is accessed all around the world is also changing moving more towards

handheld devices from the desktop. Over the last one decade mobile traffic has gone up

constantly however during 2018-2019 it was almost steady at 50 percent. With the

emergence of 5G mobile traffic is expected to go even higher capered to what it was seen

during the last half decade. Worldwide 52.2% of the web traffic came from mobile devices

in 2019 compared to just 16.2% in 2013 from the mobile devices and 56.7% from the

desktop devices in 2019 [1]. The smart phone devices have taken over desktops and laptops

for accessing internet. The existing websites and web applications are being increasingly re-

designed to improve upon their accessibility through these devices. Today the market has

wide assortment of smart phone devices from different manufacturers that vary in platform,

memory, processing capability screen size, screen resolution and compatibilities to different

systems [2]-[3].

To meet the ever growing demand of accessing websites and web application through the

mobile devices, these web applications are being re-engineered to be acceptable in terms of

cost and time. The usability of these web applications is highly dependent on the user

interface. To ensure excellent user experience, it should satisfy both in sensory and

functional needs. The development of User Interface is highly dependent on their target

platforms and usually don’t take in consideration future portability. So when there is a need

to port the application to another platform, the developer has to start from scratch.

The model and Meta-models of the system plays primary role in the re-engineering. The

modeling and transformation techniques help to transform the source model to the target

model. Both the source and the target models are platform specific models (PSM). The

tools and techniques exist to reengineer the User Interface from PSM to PSM. This porting

happens from a specific platform to another specific platform. If the source platform

remains the same and the target platform differs, the entire exercise needs to be repeated

again. This process is highly inflexible, constrained and very specific to particular couple

(source and target platforms).

In this work, a platform independent Vanilla Framework is presented that uses model as the

primary artifact. Model to model transformation is carried out from platform specific model

to platform independent model. A detailed analysis of the existing metamodel-based

transformation tools is done for the declarative model using an exhaustive criterion. The

evaluation of the chosen tools is done which are open source and have download page

available using search engine. The analysis is performed over ten different parameters.

Based on the result of the evaluation and extensive investigation, a PIM for declarative user

interface is proposed. Also the framework for model transformation using PIM model for

declarative user interface has been put forward. This framework is then applied to five of

the popular libraries such as SWING, HTML5, and more recent libraries of Android and

Python-Tkinter.

VANILLA Framework for Model Driven Re- Engineering of Declarative User Interface PJAEE, 17 (9) (2020)

7122

Rest of the paper is organized as follows. Major earlier works done in the said domain are

given in section 2. Proposed research methodology is given in section 3. Section 4 gives the

declarative model driven re-engineering including proposed Vanilla transformation engine.

Finally work is concluded with future work in section 5.

2. Related Work

During the last one and a half decade various modelling languages and techniques have

been proposed for the design and development of software systems which are complex in

nature. Major purpose of these initially developed modelling languages has been to better

facilitate the system’s coherent and common along with sharing so as to ease the

communication amongst various stake holders of the system [4]. Later in the software

engineering process models were considered as central theme of the system and not just the

documentation artefacts. These advanced software engineering process models have been

classified as model-driven engineering (MDE) like software factories [5], DSL engineering

[6], MDA [7] or also as model-driven software development (MDSD) [8]-[9].

Existing reverse engineering approaches are quite flexible; be it the contemporary use of

model analysis, model transformation, source code [10]-[11] or contemporary use of source

code [12]-[14]. Platform Specific Models (PSM) are considered as initial models [15]

which are abstracted and modified through model transformation. These models are termed

as Platform Independent Models (PIM) [16]. The code of is analyzed by compilers and

interpreters [17]: to calculate metrics [18], to find bugs [19], code clones [20] etc. There is

program code where transformation was done on binary code [21] and for profiling [22],

security [23], optimization [24] and refactoring [25]. The Model driven re-engineering

process involves the source code for declarative user interface to obtain meta-model [26].

Then model transformation is applied to transform meta-model into platform specific

models for a given platform (known as PSMs).

Modeling has been applied to reverse engineering by many researchers taking various

contexts like the detection of design pattern [27]-[29], the reconstruction of software

architecture [30], decomposition of design pattern into elemental structures [31]-[32] etc.

For handling the business temporal rules, Arevalo et al. [33] proposed a model which

addresses time-related issues. Business process model and natation metamodel have been

extended.

Ovchinnikova et. al [34] proposed an approach for software development, TFM4MDA,

based on model-driven engineering. Trias et al. [35]-[38] proposed various approaches for

automating the migration of web applications to content management system based web

application.

3. Research Methodology

Objective of the proposed work is to propose a frame work for re-engineering declarative

user interface model transformation using PIM. Based on this objective, a conceptual

framework is developed that formed the basis of the work done. A detailed analysis of the

VANILLA Framework for Model Driven Re- Engineering of Declarative User Interface PJAEE, 17 (9) (2020)

7123

existing metamodel-based transformation tools is done for the declarative model using an

exhaustive criterion. The evaluation of the chosen tools, which are open source and have

download page available using search engine like Google Scholar and Github, is done; like

UML–RSDS, Tefkat, JTL, PTL etc. The analysis is performed over ten different parameters

like language, model query, compatibility, cardinality etc. Based on the result of the

evaluation and extensive investigation, a PIM for declarative user interface is proposed.

Also the framework for model transformation using PIM model for declarative user

interface has been put forward. This framework is then applied to five of the popular

libraries such as SWING, HTML5, and more recent libraries of Android and Python-

Tkinter.

4. Declarative Model Driven Re-engineering

In MDE model transformation plays a central theme for converting a source model to target

model and visa-versa. Building a precise meta-model is a pre- requisite to model

transformation where model can be a concrete or abstract model. The transformation can be

bi-directional or uni-directional.

A detailed evaluation of the eleven chosen meta-model-based transformation tools is done

for the declarative model using an exhaustive criterion. Gaps are identified for the

declarative models in the existing meta-model-based transformation tools for the Model-to-

Model transformation. Mostly those tools are identified which are open source and has

download page available using search engine like Google Scholar and Github like UML-

RSDS, Tefkat, JTL, PTL, ModTransf, Echo, QVTR-XSLT, ModelMorf, MediniQVT,

PETE and TXL. The comparison criteria were Modeling Language, Meta-Modeling

Language, Model Query, Compatibility with Standards, Model Transformation Language

Syntax, Target Model, Cardinality, Type of Transformation, Directions, level of automation

among many.

For the above work three languages namely Java, ASP and Turing have been selected,

percentage of these languages are given in figure 1. Figure 2 and figure 3 gives the

percentage of modelling languages and meta-modelling language respectively. Model

Query Percentage in terms of Yes and No is given in figure 4. Percentage of compatibility

with two standards is given in figure 5. Three types of target models have been considered;

conservative, destructive and a combination of both, percentage of these target models are

shown in figure 6. Three types of model transformation language syntax have been

considered; textual, graphical and a combination of both, percentage of these is shown in

figure 7. Two type of transformations have been considered; endogenous and exogenous,

percentage of these is shown in figure 8. Four types of cardinality ratios have been

considered; one-to-one, one-to-N, N-to-one and N-to-N, percentage of these four

cardinality ratio is given in figure 9. Three types of direction of transformation have been

considered; uni-directional, bi-directional and multi-directional, percentage of these three

are shown in figure 10.

VANILLA Framework for Model Driven Re- Engineering of Declarative User Interface PJAEE, 17 (9) (2020)

7124

Fig. 1. Language Percentage

Fig. 2. Modeling Language Percentages

Fig. 3. Meta-Modeling Language Percentage

Fig. 4. Model Query Percentage

0 20 40 60 80

Java

ASP

Turing

Language

0 20 40 60 80

Domain Specific

General

NA

Modeling Languages

0 20 40 60

MOF

Ecore

KMM

Others

Meta-Modeling Language

0 20 40 60 80

Yes

No

Model Query

VANILLA Framework for Model Driven Re- Engineering of Declarative User Interface PJAEE, 17 (9) (2020)

7125

Fig. 5. Compatibility with Standards Percentage

Fig. 6. Target Model Percentage

Fig. 7. Model Transformation Language Syntax Percentage

Fig. 8. Type of Transformation Percentage

0 20 40 60 80 100

XMI

OCL

Compatibility with Standard

0 10 20 30 40 50

Destructive

Conservative

Both

Target Model

0 20 40 60 80

Graphical

Textual

Both

Model Transformation Language Syntax

0 20 40 60 80 100

Exogenous

Endogenous

Type of Transformation

VANILLA Framework for Model Driven Re- Engineering of Declarative User Interface PJAEE, 17 (9) (2020)

7126

Fig. 9. Cardinality Percentage

Fig. 10. Directions Percentage

The results show that all selected tools produce domain specific target model which mostly

transform PSM to PSM and none produces domain independent target model transforming

a PSM into PIM.

Vanilla Framework - Proposed Platform Independent Model

The proposed Vanilla Framework is a framework for Declarative User Interface with the

backbone of Platform Independent Model. The source artifact user interface has been

preserved. Different User Interface platforms differ in design and richness, the underlying

functionality of the basic input and output element remain the same. The elements having

similar functionality although have been given different class name in different market

libraries. This transformation is then applied to some of the popular libraries such as

SWING, HTML5, and more recent libraries of Android and Python-Tkinter.

In the Vanilla Model, 20 common elements of User Interface are identified with their

characteristic structure like text box, check box, dialog box, radio button, button, audio.

Model driven reverse engineering involves transformation of source model (PSM) from one

platform specific meta-model to Vanilla Model (PIM). Model driven forward engineering

involves transformation from Vanilla Model (PIM) to target model (PSM). The criteria for

successful transformation should fulfill certain given below requirements.

i. The tool should be able to create, modify, retrieve and drop transformations.

ii. One can reutilize the transformation model defined for one transformation from source

platform to target platform to other set of source and target platform.

iii. The transformation model must clearly define the termination condition.

0 20 40 60 80 100

1 to1

1 to N

N to 1

N to N

Cardinality

0 50 100 150

Multi Directional

Bi- Directional

Uni- Directional

Direction of Transformation

VANILLA Framework for Model Driven Re- Engineering of Declarative User Interface PJAEE, 17 (9) (2020)

7127

Vanilla Meta

Model

Vanilla Model
Platform Specific

Model

Platform Specific
Meta- Model

VATE

Conforms Conforms

iv. For each element in the source model, transformation must be complete.

VATE (Vanilla Transformation Engine) – A Transformation Tool based on Vanilla

Framework

The proposed Vanilla transformation engine transforms from source PSM to abstract level

PIM. For declarative user interface it then transforms to abstract level PIM to one or more

target PSM. The proposed selected tool is XML due to its rich libraries. The bi-

directionality is achieved by two ways. One by using the SQL queries for creating/

updating/ retrieving/deleting mappings and secondly by mapping the rules in the database

table.

Different features of VATE are shown in table 1.

Fig. 11. Architectural Representation of VATE

 Table 1

 Features of VATE Tool

 S. No. Feature Value

1. Language PHP & SQL

2. Modeling Language XML

3. Compatibility with Standards XML and supported technologies.

Relational Database Schema

4. Target Model Constructive

5. Cardinality one-to-one (1-1), one-to-many (1-N)

6 Type of Transformation Exogenous

VANILLA Framework for Model Driven Re- Engineering of Declarative User Interface PJAEE, 17 (9) (2020)

7128

7 Directions Bi- Directional

8 Rules for Mapping Relational Database Schema

9 CRUD Supports CRUD

10 Level of Automation Semi-Automatic

An XML based meta-model is defined containing model name, model elements and their

properties. The relational database schema defines the mapping of elements from one

model to another model. Design architecture of the proposed system is shown in figure 11.

One of the major feature of the proposed tool is the bi-directionality achieved through of

relational database schema. This feature is not available in any other available tools. It

consists of three major modules.

i. Meta-model

ii. Model

iii. Model Transformation Engine -VATE

VATE - The Model transformation engine is the core of this system which performs major

functionalities. This module performs the transformation from PSM to PIM and visa-versa.

Required inputs shall be taken from the user. From the relational database scheme proposed

approach will read transformation rules one-by-one during transformation.

5. Conclusion

An extensive analysis of the existing meta-model based transformation tools is done for the

declarative model using an exhaustive criterion. Results show that all selected tools produce

domain specific target model which mostly transform PIM to PSM and none produces

domain independent target model transforming a PSM into PIM. Proposed Vanilla

transformation engine framework is a platform independent model based framework for

declarative user interface based on XML technology and relational database schema. It is a

bi-directional tool, i.e. it is able to transform the source model into the target model and

target model back into the source model.

References

[1] https://www.broadbandsearch.net/blog/mobile-desktop-internet-usage-statistics (accessed

July 28, 2020)

[2] D. Zhang, Web content adaptation for mobile handheld devices, Communications of the

ACM. 50 (2007) 75-79.

[3] S.Y. Hui, Challenges in the migration to 4G mobile systems, IEEE Communications

magazine. 41 (2003) 54-59.

[4] J. Krogstie, Model-Based Development and Evolution of Information Systems – A Quality

Approach, Springer, London 2012, https://doi.org/10.1007/978-1-4471-2936-3.

[5] J. Greenfield, K. Short, S. Cook, S. Kent, Software factories: assembling applications with

patterns, models, frameworks, and tools, Wiley, 2004.

https://www.broadbandsearch.net/blog/mobile-desktop-internet-usage-statistics

VANILLA Framework for Model Driven Re- Engineering of Declarative User Interface PJAEE, 17 (9) (2020)

7129

[6] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L.C. Kats, et al., DSL

engineering: designing, implementing and using domain-specific languages, Createspace

Independent Publishing Platform, 2013.

[7] D. Frankel, Model Driven Architecture: Applying MDA to Enterprise Computing, Wiley,

2003.

[8] C. Atkinson, T. Kühne, Model-driven development: a metamodeling foundation, IEEE

Software. 20 (2003) 36-41.

[9] B. Selic, Personal reflections on automation, programming culture, and model-based

software engineering, Autom Softw Eng. 15 (2008) 379-91.

[10] O. Nierstrasz, S. Ducasse, and T. Gˇırba, The story of moose: An agile reengineering

environment, in Proc. 10th Eur. Softw. Eng. Conf. Jointly. (2005) 1-10.

[11] M. Zanoni, F. Arcelli Fontana, F. Stella, On applying machine learning techniques for

design pattern detection, J. Syst. Softw. 103 (2015) 102–117, http://dx.doi.

org/10.1016/j.jss.2015.01.037.

[12] R. C. Holt, A. Winter, A. Schurr, GXL: Toward a standard exchange format, in Proc. 7th

Work. Conf. Reverse Eng. (2000) 162-171.

[13] H. A. Müller, M. A. Orgun, S. R. Tilley, J. S. Uhl, A reverse engineering approach to

subsystem structure identification, J. Softw. Maintenance, Res. Pract. 5 (1993) 181-204,

http://dx.doi.org/10.1002/smr.4360050402.

[14] R. Kazman, L. O’Brien, and C. Verhoef, Architecture reconstruction guidelines, Softw.

Eng. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep. CMU/SEI-2002-TR-

034. (2003), http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=6255.

[15] H. Brunelière, J. Cabot, G. Dupé, F. Madiot, MoDisco: A model driven reverse engineering

framework, Inf. Softw. Technol. 56 (2014) 1012–1032.

[16] O. Group, MDA Guide Revision 2.0, 2014, http://www.omg.org/cgi-bin/doc?ormsc/14-06-

01.

[17] T. J. Harmer, F. G. Wilkie, An extensible metrics extraction environment for object-

oriented programming languages, Proceedings of the IEEE International Workshop on

Source Code Analysis and Manipulation. (2002) 26-35.

[18] D. Hovemeyerand, W. Pugh, Finding bugs is easy, ACM SIGPLAN Notices, 39 (2004).

[19] T. Kamiya, S. Kusumoto, K. Inoue Ccfinder, A multi linguistic token based code clone

detection system for large scale source code, Software Engineering, IEEE Transactions on.

28 (2002) 654-670.

[20] E. Bruneton, R. Lenglet, T. Coupaye, Asm: a code manipulation tool to implement

adaptable systems, Adaptable and extensible component systems. 30 (2002).

[21] R. Shaham, E.K. Kolodner, M. Sagiv, Heap profiling for space - efficient Java, In ACM

SIGPLAN Notices, 36 (2001) 104-113.

[22] Dahn, S. Mancoridis, Using program transformation to secure C programs against buffer

overflows, In Proceedings of WCRE. 3 (2003) 323.

[23] D. B. Loveman, Program improvement by source-to-source transformation, Journal of the

ACM (JACM). 24 (1977) 121-145.

[24] G. Kniesel, H. Koch, Static composition of re-factorings, Science of Computer

Programming. 52 (2004) 9-51.

VANILLA Framework for Model Driven Re- Engineering of Declarative User Interface PJAEE, 17 (9) (2020)

7130

[25] Smita Agarwal, Alok Agarwal, Model driven reverse engineering of user interface - A

comparative study of static and dynamic model generation tools, International Conference

on Parallel, Distributed and Grid Computing. (2014) 268-273.

[26] A. Kleppe, J. Warmer, W. Bast, MDA Explained, The Model - Driven Architecture:

Practice and Promise. Addison Welsey, 2003.

[27] F. Arcelli Fontana, S. Masiero, C. Raibulet, Elemental design patterns recognition in java,

in Proc. 13th Int. Workshop Softw. Technol. Eng. Pract. (STEP), Budapest, Hungary.

(2005) 196-205.

[28] F. Arcelli Fontana, S. Maggioni, C. Raibulet, Design patterns: A survey on their micro-

structures, J. Softw., Evol. Process. 25 (2013) 27-52, http://dx.doi.org/10.1002/smr.547.

[29] F. Arcelli Fontana, F. Perin, C. Raibulet, S. Ravani, JADEPT: Dynamic analysis for

behavioral design pattern detection, in Proc. 4th Int. Conf. Eval. Novel Approaches Softw.

Eng. (ENASE), Milan, Italy. (2009) 95-106.

[30] F. Arcelli Fontana, R. Roveda, M. Zanoni, C. Raibulet, R. Capilla, An experience report on

detecting and repairing software architecture erosion, in Proc. 13th Work. IEEE/IFIP Conf.

Softw. Arch. (WICSA), Venice, Italy. (2016) 21-30.

[31] F. Arcelli Fontana, S. Maggioni, C. Raibulet, Understanding the relevance of micro-

structures for design patterns detection, J. Syst. Softw. 84 (2011) 2334-2347,

http://dx.doi.org/10.1016/j.jss.2011.07.006.

[32] F. Arcelli Fontana, S. Masiero, C. Raibulet, F. Tisato, A comparison of reverse engineering

tools based on design pattern decomposition, in Proc. 16th Austral. Softw. Eng. Conf.

(ASWEC), Brisbane, Australia. (2005) 262-269, http://dx.doi.org/10.1109/ASWEC.2005.5.

[33] C. Arevalo, M.J. E. Cuaresma, I. M. Ramos, M. Domínguez-Muñoz, A metamodel to

integrate business processes time perspective in BPMN 2.0, Inf. Softw. Technol. 77 (2016)

17–33.

[34] V. Ovchinnikova, E. Asnina, The algorithm of transformation from UML sequence

diagrams to the topological functioning model, in Proc. 10th Int. Conf. Eval. Novel

Approaches Softw. Eng. (ENASE), Barcelona, Spain. (2015) 377-384.

[35] F. Trias, V. Castro, M. López-Sanz, E. Marcos, Reverse engineering applied to CMS-based

Web applications coded in PHP: A proposal of migration, in Proc. 8th Int. Conf. ENASE,

Angers, France. (2013) 241-256.

[36] F. Trias, V. de Castro, M. López-Sanz, E. Marcos, An ADM-based method for migrating

CMS-based Web applications: Extracting ASTM models from php code, in Proc. 1st Int.

Workshop Softw. Evol. Modernization (SEM), Angers, France. (2013) 85-92.

[37] F. Trias, V. de Castro, M. López-Sanz, E. Marcos, An ADM-based method for migrating

CMS-based Web applications, in Proc. 25th Int. Conf. Softw. Eng. Knowl. Eng. (SEKE),

Boston, MA, USA. (2013) 256-261.

[38] F. Trias, V. de Castro, M. López-Sanz, E. Marcos, Migrating traditional Web applications

to CMS-based Web applications, Electron. Notes Theor. Comput. Sci. 314 (2015) 23-44.

