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Abstract.- The objective of this paper is to consider new generalized systems of
nonlinear mixed variational inequalities including 3k-distinct nonlinear relaxed
cocoercive operators. We proposed k-steps explicit iterative methods including resolvent
operators for this considered system and present the equivalent fixed point problem of
this new generalized systems of variational inequalities. This equivalent fixed point
problem suggest us k-steps explicit iterative algorithms to obtain approximate solution of
considered system. Convergence results of k-step explicit iterative algorithms are
obtained.

1. Introduction.

In this paper, we consider and study the generalized system of nonlinear mixed
variational inequalities. There are several techniques to solved variation
inequality problems. The resolvent operator technique is one of the iterative
methods to solve variational inequalities. The resolvent operator technique is
the generalized form of projection methods. Many heuristics widely used
projection techniques to solve variational inequalities and systems of
variational inequalities. Recently Noor et. al [6, 9], Verma [11, 12], Hao et. al
[2], Kim [4] and Zhang [13] obtained the approximate solution of system of
nonlinear variational inequalities by using two or three steps iterative methods
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involving projection operator. For further details, please see [1, 2, 4, 7, 8, 9, 11,
12, 13]. Very recently, Noor and Noor [6], Husain and Gupta [3] and Kim and
Kim [5], put forward two steps iterative methods linked with resolvent operator
to establish the convergence result.

This present work is impelled by the research going on this field. The aim is to
perusal the new generalized system of nonlinear variational inequalities
connecting with 3k-distinct nonlinear relaxed (r, s)-cocoercive operators. First,
we give the fixed point problem equivalent to considered system. By this
equivalent formulations, we proposed k-steps explicit algorithms with
resolvent operator. Utilization of resolvent operator approach, we make an
attempt to obtain an approximate solution of the generalized system of
nonlinear variational inequalities. The consider conditions guaranteed the
convergence of iterative sequences obtained by the k-steps explicit algorithms.
This work extend and improve the well-known results in the literature [2, 3, 4,
5,6,7,11, 12, 13].

Throughout the manuscript, H is a real Hilbert space endowed with a norm ||
.l 'and an inner product (.,.). Let D c H be a closed and convex set in H.

Let us given that nonlinear operators A,f,g:H — H and continuous
function ¢:H — R U {+ oo}, then generalized nonlinear mixed variational
inequality problem (GNMVIP) is to find p* € H such that

AA@P) +g@) = f@)p—9®@)) 29@@)) —e®).Vp €
H,A>0. (1.2)
It observe that p* is a solution of GNMVIP (1.1) if and only if p* is a fixed
pointof I — g — J,[f — A4].

If f = g = I, then the GNMVIP (1.1) is equivalent to find p* € H such

that

(AP )p—p) 2 9@) —¢{®).Vp €H. (1.2)
The resolvent operator connected with maximal monotone operator A is given
as

Ja(@") = U +24) Y (p*), Vp*E€H,1> 0.

If A is maximal monotone if and only if its resolvent operator J, connected
with A is single-valued as well as non-expansive. If ¢(.) is a proper, convex
and lower-semicontinuous function, then its subdifferential d¢(.) is a maximal
monotone operator. Then, resolvent operator /,, connected with d¢ is given as

Jo(@") = U +20¢9) ' (w),V p* € H.

Lemma 1.1 For given p*, g* € H satisfies the inequality
(r"—q’p—p7) =2 29@’) —29(), pEH
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if and only if p* = J,(q*) where J, = (I + 10¢)~"! is the resolvent
operator.
One can easily prove that J, is nonexpansive, that is, Il Jo,p* —J,p I < I
p*—pl,Vp,p* €H.
If ¢ is an indicator function of a closed convex set D c H, then J, = Pp i.e.

¢ = {+oo,otherwise,

then Problem (1.2) reduces to classical variational inequality (1.3) proposed by
Stampacchia [10], given as
(A )p—p)=0,p€D. (1.3)
Definition 1.2 A mapping A:H - H
(i) is u-strongly monotone if 3 a constant 4 > 0 such that
(Ap' —Ap™,p' —p") Z ullpt —p™ I°,Vp',p" € H;

(i) is relaxed (7, 5)-cocoercive if 3 constants 7, 5§ > 0 such that
(Ap* — Ap™,p* —p™) = =7 || Ap* — Ap™ I’+ 5 | p* —p"* I, Vp',p"* € H;

(iii) is t-Lipschitz continuous if 3 a constant ¢ > 0 such that
| Ap* — Ap™ I< T | p* — p™* I, Vp',p™* € H.

Let A;:H X HX...xH — H and f;, g;: H—» H be 3k-distinct nonlinear operators
k times

for each i € {1,2,..., k}. Then generalized system of nonlinear mixed variational
inequalities problem (GSNMVIP) is to find (pt, p?,...p*) € H X H X...x H such

(k times)

that

< A=1Ak—1 @5 0% P50 D) + 91 5D = fior 09,0 — G (PFD)

\for each 1; > 0,i € {1,2, ..., k}.
Here, we are given some special cases of GSNMVIP (1.4).

() If A; foreachi € {1,2,...,k}, is univariate mapping, then GSNMVIP (1.4)

reduces to find (pt,p?,...p*) € H X H X...X H such that
(k times)
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(L1 A1 (0% p%, .05 pY) + 01(0Y) — @D p — 91 (M) = 410(9:(PV)) — L10(p), VP € H,
(24,03, 0% .5 %) + 90D — (0,0 — 92(0?)) = 2,0(9.(pD)) — 2,0(p), Vp € H,

2 lk_1<p(gk_1(p"‘1)) — Ae-19(p),Vp € H,
(A @02 P 0%) + g (0F) = @), P = 30D = Ao (9: (@) = A (p), Vp € H,

(1.4
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(LA (P?) + g:(0") — i), — 91(PY)) = L10(g:1(P")) — 119(p),Vp € H,
(224,(0*) + g.(0*) — (%), p — 9 *)) = 1,0(92(P?)) — L,9(p), Vp € H,

k=1 Ag—1(PF) + Gre—1(@* ™) = freca (@), 0 — Gra (PFH)) =

Ae—19(Gr—1(P* ™)) — Ak—19(p), VP € H,
(A (@D + 9 (™) = f (M), — 9 (PF)) = X0 (gr(P*)) — 2@ (p), VP E H,
\for each 1; > 0,i € {1,2,...,k}.

(1.5)

(1) If ¢ is an indicator function of D c H, then GSNMVIP (1.4) reduced to
system of general variational inequalities (GSVIP)to find (pt,p?,...p%) €

D x D X...x D such that
(k times)

(LA (p%D3,...p5 pY) + 9. (D) — fi(P®),p — g1(P")) = 0,Vp € D,
(LA, (3, p%,...p" P + 9.(0*) — L,(P®).,p — 9.(p*)) = 0,Vp €D,

Va1 (05, P2 05 4 G () = fiea ()P — G (P 2 0,¥p €D, (16)
MA(@h 0% D740 + 9k (@) = fu (@), p — 9k (@) = 0,Vp € D,
\for each 1; > 0,i € {1,2,...,k}.
If k=12, and f; = g; =1, then problem (1.4) reduces to Noor’s result
discussed in [6]. If k = 1,2,3 and ¢ is an indicator function of D, then problem
(1.6) reduce to Zhang’s result discussed in [13]. Here we can establish the various
results, for example see [2, 3, 4, 5, 7].

2. Explicit iterative algorithms
Lemma (1.1) permit us to write GSNMVIP (1.4) equivalently to fixed point
problem as follows:

(910" = Jo[fi(0®) — LA (P2, p3,...p5 D],
92(0%) = Jola(0?) — 4,0, p*,...p" p?)],

<’ _ _ _
Ie-1(@* ™) = Jo[fim1 (@) = A1 A1 (@5, 01, ... p* 72, D],

9k @) = J,[fi ") = AAr (Pt p%, ... 0" 1, pM)],
\for each 1; > 0,i € {1,2,...,k}.

(2.1)
Here, we put forward the k-steps explicit iterative algorithms to find the
approximate solution of GSNMVIP (1.4) by using its alternative equivalent fixed
point formulations (2.1).
Algorithm 2.1 For any (p3, p2,...p¥) € H x H x...x H, compute the sequences

k times
{pi} {p2},.. {pk} by
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(1 — &)pn + nlpn — 91(Pn) + Jo [[1(P3) — M A1 (P2 D3, ... D, D]

(pn+1
92(Pi11) = Jolf2(ns1) — 22A2(Ps1, P - - Py DR,
Gr-1(Pr1) = Jplfi—1(Phs1) — ﬂk_lAk_l(p’riﬂ, P ... pET2, pE),
9 PE+1) = JolfePh1) — LAk (Phvr PRy - ,pn)]
(2.2)

where 1; > 0,i € {1,2,...,k} and sequence &, € [0,1] foralln > 0.

If A;,i €{1,2,...,k}, is univariate, then Algorithm (2.1) reduces to Algorithm (2.2) as

follows:
Algorithm 2.2 For any (p}, p2,...p¥) € H x H X...x H, compute the sequences

k times
{p2}, (P2} - (i} by
(Pr+1 = (1= &)pn + &nlpn — 91(03) + o [f1(P7) — 11 A1 (PD)]],

gZ(pTZL+1) =Jo [fz(Pr31+1) - AzAz(Pr31+1)]'

Lgk LKD) = Jolfim1(Ph+1) — Ak—1Ak-1 (4]
gk(pn+1) _](p [fk(pn+1) AkAk(pn+1)]'
2.3)

where 4; > 0,i € {1,2,..., k} and sequence ¢, € [0,1] forall n > 0.

If ¢ is an indicator function of D c H, then Algorithm (2.1) reduces to Algorithm

(2.3) as follows:
Algorithm 2.3 For any (p3,p3,...p%) € D x D x...x D, compute the sequences

k times

{p3}, {p3}. . (P} by
en)Pn + enlpn — 91(P3) + Polfi(p2) — 1 A1 (pE P, - .. D8, D1

Pn+r = (1 -
92 (Pr+1) = Polfz2(Pn+1) — 224:(Dis1, D - - PR P
gk 1(pn+1 - PD [fk 1(pn+1) Ak 1Ak 1(pn+1: pn:- :pn )]
Py S
(2.4)
where 4; > 0,i € {1,2,..., k} and sequence ¢, € [0,1] forall n > 0.
Definition 2.4 Amapping A:H x H X...H - H
k times
(i) is relaxed (a, B)-cocoercive in the first component if 3 constants «, § > 0 such that
(A" p?..,p") — ALV, 0%, P, pt — )
) = AL, p ) I+ B Il pt — I, vpl pt

2 —a ” A]_(plt pz;---
€ H;
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(i) is k-Lipschitz continuous if 3 a constant k > 0 such that
I Ai ("% ..., p") — A (¥, .., o) IS Ell p* — p™ I, Vp',p™* € H.

Lemma 2.5 Let us consider nonnegative sequence {p, }, satisfy p,41 < (1 —¢&,) pp +
n, Y1 =0,withe, € [0,1], X7 &, = o, and q, = o(g&,)- Thenlim,_,p, = 0.

3. Convergence Theorem
Theorem 3.1 Let i € {1,2,...,k} and (p**,p?",...,p**) be the solution of GSNMVIP

(1.4). Let A;:H x H X...H — H is relaxed («;, B;)-cocoercive and x;-Lipschitzian in the
k times
first component. Let g;: H = H is relaxed (r;,s;)-cocoercive and t;-Lipschitzian, and

fi:H — H is relaxed (73, 5;)-cocoercive and t;-Lipschitzian. If

ky<1ks<1,...ke<1 (3.1)
i1 (1= k) =TI, (K + k"), where (32)
ki = [1 + 2rit? — 2s; + t?]V/?; (3.3)
Ky = [1 + 2A4a;62 — 24,8; + A2K2)Y7%; (3.4)
k', = [1 + 27t? — 25, + t2]V% (3.5)

and ¢, € [0,1], X, &, = o, then iterative sequences {p}}, {p?},..., {p¥} generated by
Algorithm (2.1), strongly converges to the solution (p**, p%*,...,p*) € H X H X...x H.

k times
Proof. Using Algorithm (2.1) and nonexpansive property of the resolvent operator J, to

evaluate
| pps — " Il =
I (1 = &,)ps + enlpn — 91(n) + Jp[fi(03) — LA (7, P - P, D]
—(1 =& )p" — &n[p™ — 91 (@) + Jp () —
LA (%%, L p ™)
S (A —&) lpp =" I +&, I pi —p" = (g1(Pn) — g1(@™) |l
+en | (p3) — 2A1 (P2, P30 PR) — (L(P) —
LA (%%, oM ) I
< (1 =¢&,) lpp—p™ | +&, Il i — p* = 11 [A1 (D3, P32, -, DX, PR)
A (%%, P +en T g — 2™ = (91 (Ph) — 91 (@) |l
+en Il i — p** = (fi(02) — (%) |
. (3.6)
Using relaxed («;, B;)-cocoercivity and «k;-Lipschitz continuity on A; in the first
component for i = 1, we have
I p3 — p** = M[A1 (D3 D3, -, DN PR) — AL (0™ 0 i P )]
=Il p — p** 1*= 2:(A1 (P2, D3, -, P, 1) — A (0%, 0, ..., 0" p™), D7
_ pZ*)
+ 23 1 A1 (p2p3, - o pn) — A (0%, " p™) 112
< [1 + 20007 — 24,81 + A2k?] Il p2 —p** I1P

112
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= k'y | p2 — p** >, where k', given by (3.4) fori = 1.
(3.7)
Similarly, by relaxed cocoercivity and Lipschitz continuity on g; and f; for i = 1, we
have,
oz =" = (01(P2) — g1 (@™ I < ky Il pr — ™ |
,where k, given by (3.3) fori =1. (3.8)
I pi —p* = (A — A@PD 12 < K'y Ilph —p* |l
,where k'’ given by (3.5) fori = 1. (3.9)
Using (3.7)-(3.9) in (3.6), we have
I Pper =P IS [1= A — ke lpn —p* I + eu(K'y + K7 1 p7 —p** .
(3.10)
By relaxed («;, B;)-cocoercivity and k;-Lipschitz continuity on A4; in the first component
for i = 2, we get
I Dre1 — 2 — L[A2@Phen PR P PR) — A2 (0% 0™, PP D] I
=k, I p3,; —p3 2, where k', given by (3.4) fori =
2. (3.11)
Similarly, by relaxed cocoercivity and Lipschitz continuity on g; and f; for i = 2, we
have,
I prsr = P** = (G2(Prs1) — 2 (P* ) 12 < Ky I pry — P |
,k, given by (3.3) fori = 2. (3.12)
[ p131+1 -p* - (fz(pr31+1) —L@*NIP< K, P%+1 -p* |
k"', given by (3.5) for i = 2. (3.13)
Using Algorithm (2.1) and nonexpansive property of resolvent operator J,, to evaluate the
following

I 92(P121+1) - gz(Pz*) I
= Jolf2Pr+1) =242 (i1, D - - P2 PR =T [ (03D A=A (0%, %, ..., 0™ p*)] |
< pava —P* = L(A2(Dns1, D0 - P PR) — A2 (0350, 0™ PP I

+ 1 pris — 0¥ = (2 (a+1) — L@ I

< (K + K3 p31+1 -p* I
(3.14)

Using (3.12) and (3.14), we have

I pAss — P** 1< pass — P** = (G2P7+1) — G2P*N I + 1 g2(Prs1) — g2(P*) |l

I phss —P* IS ky I phys — % Il +(K', + K" Il prpy — 0 I

I p2ar — P> I < 2D 3 — p* |, where k, < 1by (3.1), that s
—R2
Il p2 —p? Il < —(""jf,’j;’z) I p3 — p** ||, where k, <
1 by (3.1). (3.15)
Through this similar process, we can evaluate
Ip3 —p* 1< E2EE 1 pt —p* I where ks < 1by (3.1). (3.16)
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| pk=1 —pl=D | < % |l pk — p** ||, where k,_; < 1 by (3.1),

(3.17)

| pk —pk I < Uafj—:;’k) Il p1 — p™* Il, where k;, < 1 by (3.1).

(3.18)
Using (3.10), (3.15)-(3.18), we get

Il prlz+1 —-p <

(1_€Tl<1_k1

— (k'
ppry Kzt KD (KI5 4 k7S) (Ko + K en) (i k%)))
1—k, 1— ks 1— k4 1— ky,
x|l pt —p* .
I phas — PV I <1 — e (1= ko = (K1 + KD I, %)) I s —p™ I

(3.19)
Since (1 —ky— (K + DT, %) € [0,1]
(3.20)

and Y.%°_, &, = oo, from Lemma 2.5, we have lim ,,_,o, Il pz — p** I = 0. This completes
the proof.

If k =1,2,and f; = g; = I, then Theorem 3.1 reduces to Noor’s result discussed in [6].
Corollary 3.2 Let i € {1,2,...,k} and (p*,p?*,...,p**) be the solution of GSNMVIP
(1.5). Assume that univariate mappings A;: H — H is relaxed (a;, §;)-cocoercive and k;-
Lipschitzian. Let g;: H —» H be relaxed (r;, s;)-cocoercive and t;-Lipschitz, and f;: H - H
be relaxed (73, 5;)-cocoercive and t;-Lipschitz. If,

k, <1,ks <1,....k; <
1; (3.21)

i'(=1 1—-k)= H{'(=1 (k's + K'";), where

(3.22)
ki = [1 + 2rit? —2s; + t7]Y%;
(3.23)
kK'; = [1 + 2A4a;6? = 20,8; + A2?]V%;
(3.24)
k', = [1 + 27rt? —25; + t7]Y%
(3.25)
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and &, € [0,1], ¥%_, &, = oo, then iterative sequences {pi}, {p?},...,{rX} generated by
Algorithm (2.2), strongly converges to the solution (p**, p%*,...,p*) € H X H X...x H.

k times

Corollary 3.3 Let i € {1,2,...,k} and (p'*,p?*,...,p"*) be the solution of GSVIP (1.6).

Assume that D < H be a closed convex subset in H and A;: H X H X...H — H is relaxed
k times

(a;, B;)-cocoercive and k;-Lipschitzian in the first component. Let g;: H = H be relaxed
(11, s;)-cocoercive and t;-Lipschitz, and f;: H —» H be relaxed (7}, 5;)-cocoercive and ¢;-
Lipschitz. If,

k, <1,ks <1,....k <
1; (3.26)

K . (A—k)=k;+K"), where

(3.27)
ki = [1 + 2rit? —2s; + t?]V/?;
(3.28)
kK'; = [1 + 2A4a;k? = 2A:8; + A2k?]V%;
(3.29)
k', = [1 + 27t? — 25, + t2]V%
(3.30)

and &, € [0,1], ¥, &, = oo, then iterative sequences {pi}, {r2},...,{rX} generated by
Algorithm (2.3), strongly converges to the solution (p**, p%*,...,p*) € D X D X...x D.

k times

If k = 1,2,3, then Corollary 3.3 reduce to Zhang’s result discussed in [13]. Here we can
give more applications of Theorem 3.1 by giving particular values to k with various
condition on f;, g;, A;, for example see [2, 3, 4, 5, 7].
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