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Abstract-. The objective of this work is to proposed a new notion called 𝐻(. , . )-𝜑-𝜂-mixed 

monotone mappings in semi-inner product spaces and define generalized resolvent operator linked 

with 𝐻(. , . )-𝜑-𝜂-mixed monotone mappings. Further, we perusal its aspects single-valued property 

as well as Lipschitz continuity. As an application, we also make an attempt to find the existence of 

solution of set valued variational inclusion involving nonlinear operators and study the graph 

convergence of proposed iterative algorithms.  

1.   Introduction. 

In 2014, Sahu et al. [13] proved the existence of solutions for a class of nonlinear 

implicit variational inclusion problems in semi-inner product spaces, which is more 

general than the results studied in [14]. Recently Luo and Huang [10], introduced 

and studied (𝐻, 𝜑)-𝜂-monotone mapping in Banach spaces which provides a 

unifying framework for various classes of monotone mapping. Most recently, Bhat 

and Zahoor [1, 2], introduced and studied (𝐻, 𝜙)-𝜂-monotone mapping in semi-

inner product space and discussed the convergence analysis of proposed iterative 

schemes for some classes of variational inclusion through generalized resolvent 

operator. For the applications point of view, see [3, 8, 10, 12, 13, 14, 16, 17]. 

The aim of this work is to investigate the notion 𝐻(. , . )-𝜑-𝜂-mixed monotone 

mapping in semi-inner product space. First, we define its resolvent operator and 

study its characteristics single-valued property as well as Lipschitz continuity. We 

also make an attempt to find the existence of solution of set valued variational 

inclusion involving nonlinear operators and study the graph convergence of 

proposed iterative algorithms. The obtained results are quite similar to above 

discussed research work but we utilize distinguished notion and approach to solve 

variational inclusion problems in 2-uniformly smooth Banach space. Our work is 

the extension and refinement of the existing results, see [1, 2, 5, 6, 8, 10, 17]. 
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  For a detailed study and fundamental results on semi-inner product spaces, 

one may refer to Lumer [11], Giles [4] and Koehler [9]. 

 

Definition 1.1 [13, 15] The Y be a Banach space, then  

(i) modulus of smoothness of Y defined as ϱY(s)  =  sup {
∥u1+v1∥+∥u1−v1∥

2
− 1: ∥

u1 ∥≤ 1, ∥ v1 ∥≤ s} ; (ii) Y be uniformly smooth if lims→0 ϱY(s)/s =  0;  

(iii) Y be p-uniformly smooth for p > 1, if there exists c > 0 such that ϱY(s) ≤

csp;  

(iv) Y be 2-uniformly smooth if there exists c > 0 such that ϱY(s) ≤ cs2.  

 

Lemma 1.2 [13, 15] Let 𝑝 > 1 be a real number and 𝑌 be a smooth Banach space. 

Then the following statements are equivalent:  

(i) Y is 2-uniformly smooth;  

(ii) There is a constant k > 0 such that for every v1, w1 ∈ Y, the inequality holds ∥

v1 +w1 ∥2≤∥ v1 ∥2+ 2〈w1, fv1〉 + k ∥ w
1 ∥2, where fv1 ∈ J(v

1) and J(v1) =

{v1∗ ∈ Y∗: 〈v1, v1∗〉 =∥ v1 ∥2  𝑎𝑛𝑑 ∥ v1∗ ∥=∥ v1 ∥} is the normalized duality 

mapping.  

  

Remark 1.3 “ Every normed linear space Y is a semi-inner product space (see 

[11]). Infact, by Hahn-Banach theorem, for each v1 ∈ Y, there exists at least one 

functional fv1 ∈ Y
∗ such that 〈v1, fv1〉 =∥ v

1 ∥2. Given any such mapping f: Y → Y∗, 

we can verify that [w1, v1] = 〈w1, fv1〉 defines a semi-inner product. Hence we 

have the inequality ∥ v1 +w1 ∥2≤∥ v1 ∥2+ 2[w1, fv1] + s ∥ w
1 ∥2. The constant s 

is called constant of smoothness of Y, is chosen with best possible minimum 

value", [13].  

2.  Preliminaries 

 

Let 𝑌 be a 2-uniformly smooth Banach space. Its norm and topological dual space 

is given by ∥. ∥ and 𝑌∗, respectively. The semi-inner product [. , . ] signify the dual 

pair among 𝑌 and 𝑌∗.  

 In order to proceed the next, we recall some basic concepts, which will be 

needed in the subsequent sections.  

 

Definition 2.1 [10, 13] Let 𝑌 be real 2-uniformly smooth Banach space. Let single-

valued mappings 𝐻, 𝜂: 𝑌 × 𝑌 → 𝑌, and 𝑄, 𝑅: 𝑌 → 𝑌, then  

(i) 𝐻(𝑄, . ) is (𝜇, 𝜂)-cocoercive in regards R if there ∃ constant μ > 0 such that  

[𝐻(𝑄𝑢, 𝑥) − 𝐻(𝑄𝑢′, 𝑥), 𝜂(𝑢, 𝑢′)]  ≥  𝜇 ∥ 𝑄𝑢 − 𝑄𝑢′ ∥2, ∀𝑥, 𝑢, 𝑢′ ∈ 𝑌; 

(ii) 𝐻(. , 𝑅) is (𝛾, 𝜂)-relaxed monotone in regards R if there ∃ constant γ > 0 such 

that  

[𝐻(𝑥, 𝑅𝑢) − 𝐻(𝑥, 𝑅𝑢′), 𝜂(𝑢, 𝑢′)]  ≥  −𝛾 ∥ 𝑢 − 𝑢′ ∥2, ∀𝑥, 𝑢, 𝑢′ ∈ 𝑌; 

(iii) 𝐻(𝑄, . ) is 𝜅1-Lipschitz continuous in regards Q if there ∃ constant κ1 such that  
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∥ 𝐻(𝑄𝑢, 𝑥) − 𝐻(𝑄𝑢′, 𝑥) ∥ ≤  𝜅1  ∥ 𝑢 − 𝑢′ ∥, ∀𝑥, 𝑢, 𝑢′ ∈ 𝑌; 

(iv) 𝜂 is be τ-Lipschitz continuous if there ∃ constant 𝜏 > 0 such that  

 ∥ 𝜂(𝑢, 𝑢′) ∥ ≤  𝜏 ∥ 𝑢 − 𝑢′ ∥, ∀𝑢, 𝑢′ ∈ 𝑌. 

Definition 2.2  Let 𝜂: 𝑌 × 𝑌 → 𝑌 be the mapping and 𝑀:𝑌 × 𝑌 ⊸ 𝑌 be the multi-

valued mapping. Then 𝑀 is called (𝑚, 𝜂)-relaxed monotone if ∃ a constant 𝑚 > 0 

such that  

[𝑣∗ − 𝑤∗, 𝜂(𝑣, 𝑤)] ≥ −𝑚 ∥ 𝑣 − 𝑤 ∥2, ∀𝑣, 𝑤 ∈ 𝑌, 𝑣∗ ∈ 𝑀(𝑣, 𝑡), 𝑤∗

∈ 𝑀(𝑤, 𝑡), f𝑜𝑟 𝑒𝑎𝑐ℎ 𝑓𝑖𝑥𝑒𝑑 𝑡 ∈ 𝑌; 

 

Definition 2.3  A multi-valued mapping 𝑆: 𝑌 → 𝐶𝐵(𝑌) is called 𝐷-Lipschitz 

continuous with constant 𝜆𝑆 > 0, if  

𝐷(𝑆𝑣, 𝑆𝑤) ≤  𝜆𝑆  ∥ 𝑣 − 𝑤 ∥,

∀𝑣,𝑤 ∈ 𝑌,𝑤ℎ𝑒𝑟𝑒 𝐷(. , . ) is Hausdorff metric 𝐶𝐵(𝑌). 

3.  Preliminaries 

 

Let 𝑌 be 2-uniformly smooth Banach space. Assume that 𝜂, 𝐻: 𝑌 × 𝑌 → 𝑌, and 

𝜑,𝑄, 𝑅: 𝑌 → 𝑌 be single-valued mappings and 𝑀:𝑌 × 𝑌 ⊸ 𝑌 be a multi-valued 

mapping. 

 

Definition 3.1  [6]  Let 𝐻(. , . ) is (𝜇, 𝜂)-cocoercive in regards 𝑄 with non-negative 

constant 𝜇 and (𝛾, 𝜂)-relaxed monotone in regards 𝑅 with non-negative constant 𝛾, 

then 𝑀 is called 𝐻(. , . )-𝜑-𝜂- mixed monotone in regards 𝑄 and 𝑅 if for each fixed 𝑡, 

𝜑𝑜𝑀(. , 𝑡) is (𝑚, 𝜂)-relaxed monotone in regards first argument and (𝐻(. , . ) +

𝜆𝜑𝑜𝑀(. , 𝑡))(𝑌)  =  𝑌, 𝜆 > 0.  

    

Let us consider the following  

Assumption 𝑴𝟏: Let 𝐻 is (𝜇, 𝜂)-cocoercive in regards 𝑄 with non-negative constant 

𝜇 and (𝛾, 𝜂)-relaxed monotone in regards 𝑅 with non-negative constant 𝛾 with 𝜇 >

𝛾. 

Assumption 𝑴𝟐: Let 𝑄 is 𝛼-expansive. 

Assumption 𝑴𝟑: Let 𝜂 is 𝜏-Lipschitz continuous. 

Assumption 𝑴𝟒: Let 𝑀 is 𝐻(. , . )-𝜑-𝜂-mixed monotone mapping in regards 𝑄 and 

𝑅 for each fixed 𝑡 ∈ 𝑌.  

Theorem 3.2 [6] Let assumptions 𝑀1, 𝑀2 and 𝑀4 hold good with ℓ = 𝜇𝛼2 − 𝛾 >

𝑚𝜆, then (𝐻(𝑄, 𝑅) + 𝜆𝜑𝑜𝑀(. , 𝑡))−1 is single-valued.  

 

Definition 3.3  [6]  Let assumptions 𝑀1, 𝑀2 and 𝑀4 hold good with ℓ = 𝜇𝛼2 − 𝛾 >

𝑚𝜆 then the  resolvent operator 𝑅𝑀(.,𝑡),𝜑
𝐻(.,.)−𝜂

: 𝑌 →  𝑌 is given as 𝑅𝑀(.,𝑡),𝜑
𝐻(.,.)−𝜂

(𝑢)  =

 (𝐻(𝑄, 𝑅) + 𝜆𝜑𝑜𝑀(. , 𝑡))−1(𝑢), ∀ 𝑢 ∈ 𝑌.  

Theorem 3.4 [6] Let assumptions 𝑀1-𝑀4 hold good with ℓ = 𝜇𝛼2 − 𝛾 > 𝑚𝜆 and 𝜂 

is 𝜏-Lipschitz then 𝑅𝑀(.,𝑡),𝜑
𝐻(.,.)−𝜂

: 𝑌 →  𝑌 is 
𝜏

ℓ−𝑚𝜆
-Lipschitz continuous, that is,  
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 ∥ 𝑅𝑀(.,𝑡),𝜑
𝐻(.,.)−𝜂

(𝑦) − 𝑅𝑀(.,𝑡),𝜑
𝐻(.,.)−𝜂

(𝑧) ∥≤
𝜏

ℓ−𝑚𝜆
∥ 𝑦 − 𝑧 ∥, ∀ 𝑦, 𝑧 ∈ 𝑌, 𝑎𝑛𝑑 𝑓𝑖𝑥𝑒𝑑 𝑡 ∈ 𝑌. 

  

Here, we are given the graph convergence for 𝐻(. , . )-𝜑-𝜂-mixed monotone mapping  

Definition 3.5 Let set-valued mappings {𝑀𝑘}, 𝑀:𝑌 ⊸ 𝑌 are 𝐻(. , . )-𝜑-𝜂-mixed 

monotone mappings in regards 𝑄 and 𝑅 for 𝑘 = 0,1,2, . ... The sequence 𝑀𝑘 is graph-

convergent to 𝑀, denoted by 𝑀𝑘 ⟶
𝐻𝜂
𝜑
𝐺

𝑀, if for every (𝑥, 𝑦) ∈ 𝑀 there exists a 

sequence {(𝑥𝑘, 𝑦𝑘)} ∈ 𝑔𝑟𝑎𝑝ℎ(𝑀
𝑘) such that 𝑥𝑘 → 𝑥, 𝑦𝑘 → 𝑦  as 𝑘 → ∞.  

  

Lemma 3.6 Let set-valued mappings {𝑀𝑘}, 𝑀:𝑌 × 𝑌 ⊸ 𝑌 be 𝐻(. , . )-𝜑-𝜂-mixed 

monotone mappings on 𝑌 for 𝑘 = 0,1,2, . . .. with assumptions 𝑀1-𝑀4 hold good 

with ℓ = 𝜇𝛼2 − 𝛾 > 𝑚𝜆. 𝐻(𝑄, 𝑅) is 𝜅1, 𝜅2 Lipschtiz continuous in regards first 

and second component, respectively. Then sequence 𝑀𝑘 ⟶
𝐻𝜂
𝜑
𝐺

𝑀 if and only if 

𝑅
𝑀𝑘(.,𝑡𝑘),𝜑

𝐻(.,.)−𝜂
(𝑢) → 𝑅𝑀(.,𝑡),𝜑

𝐻(.,.)−𝜂
(𝑢) for all 𝑢 ∈ 𝑌 and 𝜆 > 0, where  

𝑅
𝑀𝑘(.,𝑡𝑘),𝜑

𝐻(.,.)−𝜂
= (𝐻(. , . ) + 𝜆𝜑𝑜𝑀𝑘(. , 𝑡𝑘))

−1, 𝑅𝑀(.,𝑡),𝜑
𝐻(.,.)−𝜂

           

= (𝐻(. , . ) + 𝜆𝜑𝑜𝑀(. , 𝑡))−1 f𝑜𝑟 𝑒𝑎𝑐ℎ 𝑓𝑖𝑥𝑒𝑑 𝑡𝑘, 𝑡, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 

 

The proof of the above lemma can be easily obtained. 

4  Formulation of the Problem and Existence of Solution. 

 

Let 𝑌 be 2-uniformly smooth Banach space. Let 𝑆, 𝑇, 𝐺: 𝑌 → 𝐶𝐵(𝑌) be the 

multi-valued mappings, and let 𝑄, 𝑅, 𝜑: 𝑌 → 𝑌, 𝑃: 𝑌 × 𝑌 → 𝑌 and 𝜂, 𝐻: 𝑌 × 𝑌 → 𝑌 

be single-valued mappings. Suppose that multi-valued mapping 𝑀:𝑌 × 𝑌 ⊸ 𝑌 be a 

𝐻(. , . )-𝜑-𝜂-mixed monotone mapping in regards 𝑄, 𝑅. We consider the following 

generalized set-valued variational like inclusion problem to find 𝑢 ∈ 𝑌, 𝑣 ∈ 𝑆(𝑢), 

𝑤 ∈ 𝑇(𝑢) and 𝑡 ∈ 𝐺(𝑢) such that  

                                                     0 ∈  𝑃(𝑣, 𝑤) + 𝑀(𝑢, 𝑡).                                                          

(4.1) 

Huang et al. [7] studied similar problem to (4.1) when 𝑀 is maximal monotone 

operator in Hilbert space. 

 

Lemma 4.1 Let us consider the mapping 𝜑: 𝑌 → 𝑌 such that 𝜑(𝑣 + 𝑤) = 𝜑(𝑣) +

𝜑(𝑤) and 𝐾𝑒𝑟(𝜑) = {0}, where 𝐾𝑒𝑟(𝜑) = {𝑣 ∈ 𝑌: 𝜑(𝑣) = 0}. If (𝑢, 𝑣, 𝑤, 𝑡), 

where 𝑢 ∈ 𝑌, 𝑣 ∈ 𝑆(𝑢), 𝑤 ∈ 𝑇(𝑢) and 𝑡 ∈ 𝐺(𝑢) is a solution of problem (4.1) if 

and only if (𝑢, 𝑣, 𝑤, 𝑡) satisfies the following relation:  

                      𝑢 =  𝑅𝑀(.,𝑡),𝜑
𝐻(.,.)−𝜂

 [𝐻(𝑄𝑢, 𝑅𝑢) − 𝜆𝜑𝑜𝑃(𝑣, 𝑤)].                                                       

(4.2)  

  

Theorem 4.2 Let us consider the problem (4.1) with assumptions 𝑀1-𝑀3 hold good 

and 𝜑(𝑣 + 𝑤) = 𝜑(𝑣) + 𝜑(𝑤) and 𝐾𝑒𝑟(𝜑) = {0}. Let 𝑆, 𝑇 and 𝐺 are 𝜆𝑆, 𝜆𝑇 and 
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𝜆𝐺 𝐷-Lipschitz continuous, and 𝐻(𝑄, 𝑅) is 𝜅1, 𝜅2-Lipschitz continuous in regards 

𝑄 and 𝑅, respectively. Let 𝜑𝑜𝐹 is (𝜈, 𝜂)-relaxed monotone in first component and 

𝜖1, 𝜖2-Lipschitz continuous in the first and second component, respectively with 

0 < √{(𝜅1 + 𝜅2)2 + 2𝜈𝜆𝜆𝑆
2 + 2𝜖1𝜆𝜆𝑆((𝜅1 + 𝜅2) + 𝜏𝜆𝑆) + 𝜖1

2𝜆2𝜆𝑆
2} <

(1−𝜉𝜆𝐺)(ℓ−𝑚𝜆)

𝜏
− 𝜖2𝜆𝜆𝑇  and 

         ∥ 𝑅𝑀(.,𝑡)
𝐻(.,.)−𝜑−𝜂

(𝑢) − 𝑅𝑀(.,𝑡∗)
𝐻(.,.)−𝜑−𝜂

(𝑢) ∥≤ 𝜉 ∥ 𝑡 − 𝑡∗ ∥, ∀ 𝑡, 𝑡∗ ∈ 𝑌, 𝜉 > 0. 

Then problem (4.1) has a solution (𝑢, 𝑣, 𝑤, 𝑡).  

 

Proof: Let 𝐴: 𝑌 → 𝑌 be single-valued mapping such that  

𝐴(𝑢) =  𝑅𝑀(.,𝑡),𝜑
𝐻(.,.)−𝜂

 [𝐻(𝑄𝑢, 𝑅𝑢) − 𝜆𝜑𝑜𝑃(𝑣,𝑤)].                                          (4.3) 

 By Lemma 4.1, it is sufficient to show that the mapping 𝐴 is a contraction. Since 

𝑆, 𝑇, 𝐺 are 𝐷-Lipschitz continuous, then  

 ∥ 𝑣 − 𝑣∗ ∥≤ 𝐷(𝑆(𝑢), 𝑆(𝑢∗)) ≤ 𝜆𝑆 ∥ 𝑢 − 𝑢
∗ ∥,                                    (4.4) 

 ∥ 𝑤 − 𝑤∗ ∥≤ 𝐷(𝑇(𝑢), 𝑇(𝑢∗)) ≤ 𝜆𝑇 ∥ 𝑢 − 𝑢
∗ ∥,                                   (4.5) 

 ∥ 𝑡 − 𝑡∗ ∥≤ 𝐷(𝐺(𝑢), 𝐺(𝑢∗)) ≤ 𝜆𝐺 ∥ 𝑢 − 𝑢
∗ ∥.                                   (4.6) 

∥ 𝐴(𝑢) − 𝐴(𝑢∗) ∥=   

∥ 𝑅𝑀(.,𝑡),𝜑
𝐻(.,.)−𝜂

 [𝐻(𝑄𝑢, 𝑅𝑢) − 𝜆𝜑𝑜𝑃(𝑣,𝑤)] − 𝑅𝑀(.,𝑡∗),𝜑
𝐻(.,.)−𝜂

 [𝐻(𝑄𝑢∗, 𝑅𝑢∗)

− 𝜆𝜑𝑜𝑃(𝑣∗, 𝑤∗)] ∥ 

                                ≤  
𝜏

ℓ − 𝑚𝜆
∥ 𝐻(𝑄𝑢, 𝑅𝑢) − 𝐻(𝑄𝑢∗, 𝑅𝑢∗) − 𝜆(𝜑𝑜𝑃(𝑣,𝑤) − 𝜑𝑜𝑃(𝑣∗, 𝑤)) ∥ 

      + 
𝜏

ℓ−𝑚𝜆
𝜆 ∥ 𝜑𝑜𝑃(𝑣∗, 𝑤) − 𝜑𝑜𝑃(𝑣∗, 𝑤∗) ∥ +𝜉 ∥ 𝑡 − 𝑡∗ ∥.                                  

(4.7) 

 

∥ 𝐻(𝑄𝑢, 𝑅𝑢) − 𝐻(𝑄𝑢∗, 𝑅𝑢∗) − 𝜆(𝜑𝑜𝑃(𝑣,𝑤) − 𝜑𝑜𝑃(𝑣∗, 𝑤)) ∥2 

              ≤∥ 𝐻(𝑄𝑢, 𝑅𝑢) − 𝐻(𝑄𝑢∗, 𝑅𝑢∗) ∥2

− 2𝜆[𝜑𝑜𝑃(𝑣,𝑤) − 𝜑𝑜𝑃(𝑣∗, 𝑤), 𝜂(𝑣, 𝑣∗)] 

    +2𝜆 ∥ 𝜑𝑜𝑃(𝑣,𝑤) − 𝜑𝑜𝑃(𝑣∗, 𝑤)

∥× {∥ 𝐻(𝑄𝑢, 𝑅𝑢) − 𝐻(𝑄𝑢∗, 𝑅𝑢∗) ∥ +∥ 𝜂(𝑣, 𝑣∗) ∥} 

    +𝜆2 ∥ 𝑜𝑃(𝑣, 𝑤) − 𝜑𝑜𝑃(𝑣∗, 𝑤) ∥2.                                                                                     

(4.8) 

 

By the 𝜅1, 𝜅2-Lipschitz continuity of 𝐻(. , . ) in the first and second component, 

respectively. We get  

∥ 𝐻(𝑄𝑢, 𝑅𝑢) − 𝐻(𝑄𝑢∗, 𝑅𝑢∗) ∥≤ (𝜅1 + 𝜅2) ∥ 𝑢 − 𝑢
∗ ∥.                                

(4.9) 

 

 By 𝜖1, 𝜖2-Lipschitz continuity and (𝜈, 𝜂)-relaxed monotonicity 𝜑𝑜𝑃(. , . ), and 

(4.6),(4.7), we have  

∥ 𝜑𝑜𝑃(𝑣,𝑤) − 𝜑𝑜𝑃(𝑣∗, 𝑤)) ∥≤ 𝜖1 ∥ 𝑣 − 𝑣
∗ ∥≤ 𝜖1𝐷(𝑆(𝑢), 𝑆(𝑢

∗)) ≤

𝜖1𝜆𝑆 ∥ 𝑢 − 𝑢
∗ ∥,  (4.10) 
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∥ 𝜑𝑜𝑃(𝑣∗, 𝑤) − 𝜑𝑜𝑃(𝑣∗, 𝑤∗)) ∥≤ 𝜖2 ∥ 𝑤 − 𝑤
∗ ∥≤ 𝜖2𝐷(𝑇(𝑢), 𝑇(𝑢

∗)) ≤ 𝜖2𝜆𝑇 ∥

𝑢 − 𝑢∗ ∥,          (4.11) 

[𝜑𝑜𝑃(𝑣,𝑤) − 𝜑𝑜𝑃(𝑣∗, 𝑤), 𝜂(𝑣, 𝑣∗)] ≤ −𝜈 ∥ 𝑣 − 𝑣∗ ∥2≤ −𝜈𝜆𝑆
2 ∥ 𝑢 −

𝑢∗ ∥2.                  (4.12) 

 

Using (4.8)-(4.12), we get 

∥ 𝐻(𝑄𝑢, 𝑅𝑢) − 𝐻(𝑄𝑢∗, 𝑅𝑢∗) − 𝜆(𝜑𝑜𝑃(𝑣,𝑤) − 𝜑𝑜𝑃(𝑣∗, 𝑤)) ∥     ≤

√{(𝜅1 + 𝜅2)2 + 2𝜈𝜆𝜆𝑆
2 + 2𝜖1𝜆𝜆𝑆((𝜅1 + 𝜅2) + 𝜏𝜆𝑆) + 𝜖1

2𝜆2𝜆𝑆
2} ∥ 𝑢 − 𝑢∗ ∥.                         

(4.13) 

 Using (4.6), (4.13) in (4.7), we get 

∥ 𝐴(𝑢) − 𝐴(𝑢∗) ∥≤ Θ ∥ 𝑢 − 𝑢∗ ∥,  

wℎ𝑒𝑟𝑒 

Θ = [
𝜏

ℓ − 𝑚𝜆
[√{(𝜅1 + 𝜅2)2 + 2𝜈𝜆𝜆𝑆

2 + 2𝜖1𝜆𝜆𝑆((𝜅1 + 𝜅2) + 𝜏𝜆𝑆) + 𝜖1
2𝜆2𝜆𝑆

2}

+ 𝜖2𝜆𝜆𝑇] + 𝜉𝜆𝐺]. 

Using the given condition, we have 0 < Θ < 1. Hence, by Banach contraction 

principle, 𝐴 has a fixed point (say) 𝑢 ∈ 𝑌. Hence, we get 𝐴(𝑢)  =

 𝑅𝑀(.,𝑡),𝜑
𝐻(.,.)−𝜂

 [𝐻(𝑄𝑢, 𝑅𝑢) − 𝜆𝜑𝑜𝑃(𝑣, 𝑤)].  

  

Lemma 4.1 permit us to suggest the following iterative scheme to find the 

approximate solution of (4.1).  

 

Algorithm 4.3  For any given 𝑧0 ∈ 𝑌, we can choose 𝑢0 ∈ 𝑌, 𝑣0 ∈ 𝑆(𝑢0), 𝑤0 ∈

𝑇(𝑢0), 𝑡0 ∈ 𝐺(𝑢0) and 0 < 𝜖 < 1 such that sequences {𝑢𝑘}, {𝑣𝑘}, {𝑤𝑘} and {𝑡𝑘} 

satisfy  

 

{
  
 

  
 𝑢𝑘+1 = 𝑅𝑀𝑘(.,𝑡),𝜑

𝐻(.,.)−𝜂
(𝑧𝑘),

𝑣𝑘 ∈ 𝑆(𝑢𝑘), ∥ 𝑣𝑘 − 𝑣𝑘+1  ∥≤  𝐷(𝑆(𝑢𝑘), 𝑆(𝑢𝑘+1)) + 𝜖
𝑘+1 ∥ 𝑢𝑘 − 𝑢𝑘+1 ∥,

𝑤𝑘 ∈ 𝑇(𝑢𝑘), ∥ 𝑤𝑘 − 𝑤𝑘+1 ∥ ≤ 𝐷(𝑇(𝑢𝑘), 𝑇(𝑢𝑘+1)) + 𝜖
𝑘+1 ∥ 𝑢𝑘 − 𝑢𝑘+1 ∥,

𝑡𝑘 ∈ 𝐺(𝑢𝑘) ,   ∥ 𝑡𝑘 − 𝑡𝑘+1 ∥ ≤ 𝐷(𝐺(𝑢𝑘), 𝐺(𝑢𝑘+1)) + 𝜖
𝑘+1 ∥ 𝑢𝑘 − 𝑢𝑘+1 ∥,

𝑧𝑘+1  =  𝐻(𝑄𝑢𝑘, 𝑅𝑢𝑘) − 𝜆𝜑𝑜𝑃(𝑣𝑘, 𝑤𝑘),

 

 where 𝜆 > 0, 𝑘 ≥ 0, and 𝐷(. , . ) is the Hausdorff metric on C𝐵(𝑌).  

  

Theorem 4.4 Let us consider the problem (4.1) with assumptions 𝑀1-𝑀4. Let 

𝑀𝑘: 𝑌 × 𝑌 ⊸ 𝑌 be 𝐻(. , . )-𝜑-𝜂 mixed monotone such that 𝑀𝑘 ⟶
𝐻𝜂
𝜑
𝐺

𝑀 as 𝑘 → ∞. let 

𝜑: 𝑌 → 𝑌 be a single-valued mapping with 𝜑(𝑣 + 𝑤) = 𝜑(𝑣) + 𝜑(𝑤) and 

𝐾𝑒𝑟(𝜑) = {0}. Let 𝑆, 𝑇 and 𝐺 are 𝜆𝑆, 𝜆𝑇 and 𝜆𝐺 𝐷-Lipschitz continuous and 

𝐻(𝑄, 𝑅) is 𝜅1, 𝜅2-Lipschitz continuous in regards 𝐴 and 𝐵, respectively. Let 𝜑𝑜𝐹 

is (𝜈, 𝜂)-relaxed monotone in the first component and 𝜖1, 𝜖2-Lipschitz continuous 

in the first and second component, respectively with  
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0 < √{(𝜅1 + 𝜅2)2 + 2𝜈𝜆𝜆𝑆
2 + 2𝜖1𝜆𝜆𝑆((𝜅1 + 𝜅2) + 𝜏𝜆𝑆) + 𝜖1

2𝜆2𝜆𝑆
2}

<
(1 − 𝜉𝜆𝐺)(ℓ −𝑚𝜆)

𝜏
− 𝜖2𝜆𝜆𝑇 

 and ∥ 𝑅
𝑀𝑘(.,𝑡𝑘)

𝐻(.,.)−𝜑−𝜂
(𝑢) − 𝑅

𝑀𝑘−1(.,𝑡𝑘−1)

𝐻(.,.)−𝜑−𝜂
(𝑢) ∥≤ 𝜉 ∥ 𝑡𝑘 − 𝑡𝑘−1 ∥, ∀ 𝑡, 𝑡

∗ ∈ 𝑌, 𝜉 > 0.   

Then the iterative sequences {𝑢𝑘}, {𝑣𝑘}, {𝑤𝑘}, and {𝑡𝑘} generated by Algorithm 4.3 

converges strongly to the unique solution (𝑢, 𝑣, 𝑤, 𝑡) of SGVI (4.1).  

 

Proof. Using Algorithms 4.3 and 𝜆𝑆, 𝜆𝑇 , 𝜆𝐺-𝐷 Lipschitz continuity of 𝑆, 𝑇 and 𝐺, 

we have  

∥ 𝑣𝑘 − 𝑣𝑘−1 ∥≤ 𝐷(𝑆(𝑢𝑘), 𝑆(𝑢𝑘+1)) + 𝜖
𝑘 ∥ 𝑢𝑘 − 𝑢𝑘+1 ∥≤ {𝜆𝑆 + 𝜖

𝑘} ∥ 𝑢𝑘 −

𝑢𝑘+1 ∥, 𝑘 = 1, 2, . . .. (4.14) 

∥ 𝑤𝑘 − 𝑤𝑘−1 ∥≤ 𝐷(𝑇((𝑢𝑘), 𝑇(𝑢𝑘−1)) + 𝜖
𝑘 ∥ 𝑢𝑘 − 𝑢𝑘+1 ∥≤ {𝜆𝑇 + 𝜖

𝑘} ∥ 𝑢𝑘 −

𝑢𝑘+1 ∥  𝑘 = 1, 2, . . . ., (4.15) 

∥ 𝑡𝑘 − 𝑡𝑘−1 ∥≤ 𝐷(𝐺((𝑢𝑘), 𝐺(𝑢𝑘−1)) + 𝜖
𝑘 ∥ 𝑢𝑘 − 𝑢𝑘+1 ∥≤ {𝜆𝐺 + 𝜖

𝑘} ∥ 𝑢𝑘 −

𝑢𝑘+1 ∥, 𝑘 = 1, 2, . . . .. (4.16) 

 

 By Lipschitz continuity of resolvent operator and second condition, we have  

∥ 𝑢𝑘+1 − 𝑢𝑘 ∥≤

∥ 𝑅
𝑀𝑘(.,𝑡𝑘),𝜑

𝐻(.,.)−𝜂
[𝐻(𝑄𝑢𝑘 , 𝑅𝑢𝑘) − 𝜆𝜑𝑜𝑃(𝑣𝑘, 𝑤𝑘)]

− 𝑅
𝑀𝑘−1(.,𝑡𝑘−1),𝜑

𝐻(.,.)−𝜂
[𝐻(𝑄𝑢𝑘−1, 𝑅𝑢𝑘−1) − 𝜆𝜑𝑜𝑃(𝑣𝑘−1, 𝑤𝑘−1)] ∥ 

≤∥ 𝑅
𝑀𝑘(.,𝑡𝑘),𝜑

𝐻(.,.)−𝜂
[𝐻(𝑄𝑢𝑘 , 𝑅𝑢𝑘) − 𝜆𝜑𝑜𝑃(𝑣𝑘, 𝑤𝑘)]

− 𝑅
𝑀𝑘(.,𝑡𝑘),𝜑

𝐻(.,.)−𝜂
[𝐻(𝑄𝑢𝑘−1, 𝑅𝑢𝑘−1)  𝜆𝜑𝑜𝑃(𝑣𝑘−1, 𝑤𝑘−1)] ∥ 

 +∥ 𝑅
𝑀𝑘(.,𝑡𝑘),𝜑

𝐻(.,.)−𝜂
[𝐻(𝑄𝑢𝑘−1, 𝑅𝑢𝑘−1) − 𝜆𝜑𝑜𝑃(𝑣𝑘−1, 𝑤𝑘−1)]

− 𝑅
𝑀𝑘−1(.,𝑡𝑘−1),𝜑

𝐻(.,.)−𝜂
[𝐻(𝑄𝑢𝑘−1, 𝑅𝑢𝑘−1) − 𝜆𝜑𝑜𝑃(𝑣𝑘−1, 𝑤𝑘−1)] ∥ 

 ≤
𝜏

ℓ − 𝑚𝜆
∥ 𝐻(𝑄𝑢𝑘 , 𝑅𝑢𝑘) − 𝐻(𝑄𝑢𝑘−1, 𝑄𝑘𝑘−1) − 𝜆(𝜑𝑜𝑃(𝑣𝑘, 𝑘𝑘)

− 𝜑𝑜𝑃(𝑣𝑘−1, 𝑤𝑘)) ∥ 

                 +
𝜏𝜆

ℓ−𝑚𝜆
∥ 𝜑𝑜𝑃(𝑣𝑘−1, 𝑤𝑘) − 𝜑𝑜𝑃(𝑣𝑘−1, 𝑤𝑘−1) ∥ +𝜉 ∥ 𝑡𝑘 − 𝑡𝑘−1 ∥.                           

(4.17) 

In the light of (4.13), we can obtained  

 

∥ 𝐻(𝑄𝑢𝑘 , 𝑅𝑢𝑘 − 𝐻(𝑄𝑢𝑘−1, 𝑅𝑢𝑘−1) − (𝜑𝑜𝑃(𝑣𝑘, 𝑤𝑘) − 𝜑𝑜𝑃(𝑣𝑘−1, 𝑤𝑘)) ∥ 

≤ √[(𝜅1 + 𝜅2)2 + 2𝜈𝜆{𝜆𝑆 + 𝜖𝑘}2 + 2𝜖1𝜆{𝜆𝑆 + 𝜖𝑘}{(𝜅1 + 𝜅2) + 𝜏{𝜆𝑆 + 𝜖𝑘}} + 𝜖1
2𝜆2{𝜆𝑆 + 𝜖𝑘}2] 

∥ 𝑢𝑘 − 𝑢𝑘−1 ∥.                                                                  (4.18) 

Thus equation (4.17) becomes  

∥ 𝑢𝑘+1 − 𝑢𝑘 ∥≤ Θ(𝜖
𝑘) ∥ 𝑢𝑘 − 𝑢𝑘−1 ∥,                                             (4.19) 
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wℎ𝑒𝑟𝑒  Θ(𝜖𝑘) =

[
𝜏

ℓ−𝑚𝜆
[√{(𝜅1 + 𝜅2)2 + 2𝜈𝜆{𝜆𝑆 + 𝜖𝑘}2 + 2𝜖1𝜆{𝜆𝑆 + 𝜖𝑘}((𝜅1 + 𝜅2) + 𝜏{𝜆𝑆 + 𝜖𝑘}) + 𝜖1

2𝜆2{𝜆𝑆 + 𝜖𝑘}} 

                                                   +𝜖2𝜆{𝜆𝑇 + 𝜖
𝑘}] + 𝜉{𝜆𝑆 + 𝜖

𝑘}]. 

 Since 0 < 𝜖 < 1, this implies that Θ(𝜖𝑘) → Θ as 𝑘 → ∞, where  

Θ = [
𝜏

ℓ −𝑚𝜆
[√{(𝜅1 + 𝜅2)2 + 2𝜈𝜆𝜆𝑆

2 + 2𝜖1𝜆𝜆𝑆((𝜅1 + 𝜅2) + 𝜏𝜆𝑆) + 𝜖1
2𝜆2𝜆𝑆}

+ 𝜖2𝜆𝜆𝑇] + 𝜉𝜆𝑆]. 

 It is given that Θ < 1, then {𝑢𝑘} is a Cauchy sequence in Banach space 𝑌, then 

𝑢𝑘 → 𝑢 as 𝑘 → ∞. 

 

From equation (4.14)-(4.16) and Algorithm 4.3, the sequences {𝑣𝑘}, {𝑤𝑘} and {𝑡𝑘} 

are also Cauchy sequences in 𝑌. Thus, there exist 𝑣, 𝑤 and 𝑡 such that 𝑣𝑘 → 𝑣, 

𝑤𝑘 → 𝑤 and 𝑡𝑘 → 𝑡 as 𝑘 → ∞. Next we will prove that 𝑣 ∈ 𝑆(𝑢). Since 𝑣𝑘 ∈

𝑆(𝑢𝑘), then  

              𝑑(𝑣, 𝑆(𝑢))  ≤ ∥ 𝑣 − 𝑣𝑘 ∥  + 𝑑(𝑣𝑘, 𝑆(𝑢)) 

      ≤ ∥ 𝑣 − 𝑣𝑘 ∥  + 𝐷(𝑆(𝑢𝑘), 𝑆(𝑢)) 

                                    ≤ ∥ 𝑣 − 𝑣𝑘 ∥  + 𝜆𝑆  ∥ 𝑢𝑘 − 𝑢 ∥→  0, a𝑠 𝑘 → ∞, 

 

which gives 𝑑(𝑣, 𝑆(𝑢)) = 0. Due to 𝑆(𝑢) ∈ 𝐶𝐵(𝑌), we have 𝑣 ∈ 𝑆(𝑢). In the same 

manner, we easily show that 𝑤 ∈ 𝑇(𝑢) and 𝑡 ∈ 𝐺(𝑢). By the continuity of 

𝑅𝑀(.,𝑡),𝜑
𝐻(.,.)−𝜂

, 𝑄, 𝑅, 𝑆, 𝑇 𝐺, 𝜑𝑜𝑃, 𝜂 𝑎𝑛𝑑 𝑀 and Algorithms 4.3, we know that 

𝑢, 𝑣, 𝑤 a𝑛𝑑 𝑡 satisfy 𝑢 =  𝑅𝑀(.,𝑡),𝜑
𝐻(.,.)−𝜂

 [𝐻(𝑄𝑢, 𝑅𝑢) − 𝜆𝜑𝑜𝑃(𝑣,𝑤)]. Now using 

Lemma 4.1, (𝑢, 𝑣, 𝑤, 𝑡) is a solution of the problem (4.1). 
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