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Abstract 

The present article analyzesthe axisymmetric steady, incompressible and laminar flow of a 

micropolar fluid between two parallel stationary disks with uniform porosity where both disks are 

subjected to uniform suction. In this study higher-order, nonlinear partial differential equations are 

reconstructed into a system of nonlinear ordinary differential equations by using Von Karman’s 

similarity transformation. An analytical method,Homotopy Perturbation Method (HPM),is adopted 

to get the solution of obtained coupled nonlinear ordinary differential equations associated with 

boundary conditions. The behavior of the normal velocity, streamwise velocity components and the 

microrotation for severalparameters likesuction Reynolds number, vortex-viscosity, spin-gradient 

viscosity and micro-inertia densityhave been presented graphically. The validity of results obtained 

by HPM isverified by numerical results.The Maple software packageis usedfor calculation of 

velocity and the microrotation components.  
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1. Introduction 

Eringen [1] presented the concept of simple microfluids which says that it is 

a medium whose properties and nature are affected by the fluid elements. 

This theory is updated by himself [2] and concluded a subclass of these fluids 

which are known as micropolar fluids. In the case of this fluid,two new 

velocity variables of micropolar fluidsare added which were not present in 

Navier-Stokes equations. The comprehensivestudy of micropolar fluids can 

be studied in the articles written by Eringen [3] and lukaszewicz [4]. 

 The problem of the flow in the model of disks has a major field of 

interest in fluid mechanics. Such types of fluid flow have applications in 

hydrodynamical machines and apparatus, magnetic storage devices, crystal 

growth process etc. A Keller-box method was applied by Bhat and Katagi [5] 

to discuss the porosity of disks. MHD flow and heat transfer were 

investigated by Ashraf and Wehgal [6]. Agarwal and Dhanapal [7] [8], 

Takhar et al.[9] [10], Kamal et al. [11], Ashraf et al. [12] and Sajid et al. [13] 

have studiedthe flow and heat transfer of a micropolar fluid in different 

conditions of rotating disks by analytical and numerical methods. A shear 

flow problem for compressible viscous micropolar fluid numerically by 

Drazic et al [14]. Shabbir et al. [15] have studied modeling and numerical 

simulation of a micropolar fluid over a covered surfaced by the Keller-box 

method. Cattaneo-Christov heat flux model was studied by Doh et al. [16]. A 

numerical approach of partial slip effect in the flow of MHD micropolar 

nanofluid flow due to a rotating disk has been presented by Ramazan et al. 

[17]. Abbas et al. [18] have discussed an extended version of Yamada-ota 
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and Xu model. Khan et al. [19] have also discussed flow with modified 

Darcy’s law. 

 The author has used an analytical approach to solve this model. Most 

of the flow problems are nonlinear. Some mathematicianshave solved a 

system of nonlinear ODEs numerically and some of them employed 

analytical methods to solve this type of equations. In this model 

authoremployed HPM to solve a system of non-linear ODEs and shown its 

comparison with a numerical method. Hojjati and Jafari [20], Bozkurt and 

Zuhal [21] have usedthe analytical technique to solve nonlinear problems in 

some models. He [22] has firstly developed the homotopy perturbation 

method in 1999. This method has been again updated by He [23-26]. The 

HPM is used in the flow past a rotating disk that has been discussed by 

Donald [27]. Jansi et al. [28] have discussed the analytical solution HPM to 

solve the model. Sheikholeslami et al. [29] have presented HPM for the 

three-dimensional problem. Recently, Agarwal and Mishra [30] and Agarwal 

[31] discussed flow and heat mass transfer in the rotating and stretchable 

disks respectively. 

 

 The primary objective of this article is to show the effect of different 

parameters on velocities and microrotation profiles in the present model. 

HPM is employed to solve nonlinear ODEs.  To check the validity and 

exactness of the method, the results achieved by HPM are compared with the 

numerical method. The variation of streamwise velocity, normal velocity and 

microrotation profile has been discussed at different values of parameters and 

presented graphically. 
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2. Mathematical Formulation  

Eringen [1] suggested thebasic equations of motion for thisfluid which are as 

follows: 

𝜕𝑑

𝜕𝑡
+ ∇(𝑑�⃗� ) = 0         

  (1) 

(𝜆 + 𝜇 + 𝜅)∇(∇�⃗� ) − (𝜇 + 𝜅)∇ × ∇ × �⃗� + 𝜅∇ × Ω⃗⃗ − ∇ 𝑝 + 𝑑 𝑓 = 𝑑
𝐷�⃗⃗� 

𝐷𝑡
   

 (2) 

(𝛼 + 𝛽 + 𝛾)∇(∇. Ω⃗⃗ ) − 𝛾(∇ × ∇ × Ω⃗⃗ ) + 𝜅∇�⃗� − 2𝜅Ω⃗⃗ + 𝑑c = 𝑑𝑗
𝐷Ω⃗⃗ 

𝐷𝑡
   

  (3) 

where �⃗�  is the fluid velocity vector, Ω⃗⃗  is the microrotation, 𝑑 is the density, 𝑝 

is the pressure, 𝑓  and c  are the body force and body couple per unit mass 

respectively.𝜇, 𝑑, 𝑗, 𝜅, 𝛾are viscosity coefficients.
𝐷

𝐷𝑡
is the material derivative. 

The components of velocity and microrotation are given by 

�⃗� = (𝑢𝑟(𝑟, 𝑧), 0, 𝑢𝑧(𝑟, 𝑧)),        Ω⃗⃗ = (0, ℕ(𝑟, 𝑧), 0)     

   (4) 
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Fig (1) Model of the porous disks with uniform suction 

In reference to cylindrical set (𝑟, 𝜃, 𝑧), let system has two infinite parallel 

disks stationed at 𝑧 = ±ℓ. A micropolar fluid is occupied between these two 

parallel disks. We apply on the flow field a uniform suction with uniform 

velocity 2𝑉. Let the center of the disks is coinciding with the axis 𝑟 = 0. We 

are also assuming the gap between both the disks (2ℓ) is less than to the 

radius of the disks.  𝑢𝑟and𝑢𝑧 are the components of the velocity in the 

direction of 𝑟-axis and 𝑧-axis respectively. ℕis a microrotation of flow. Since 

uniform suction from both disks is considered in this model therefore the 

flow of fluid will be in an outward direction with uniform velocity 2𝑉. Since 

𝑐𝑢𝑟𝑙 ℕ = 0 therefore, the component of microrotation will be considered 

zero. 

On substituting velocity and microrotation vector in Eq (1)-Eq (3), we get the 

followingequations for such fluid which are as follows 

𝜕𝑢𝑟

𝜕𝑟
+

𝑢𝑟

𝑟
+

𝜕𝑢𝑧

𝜕𝑧
= 0        

  (5) 

𝑢𝑟
𝜕𝑢𝑟

𝜕𝑟
+ 𝑢𝑧

𝜕𝑢𝑟

𝜕𝑧
= (

𝜇+𝜅

𝑑
) (

𝜕2𝑢𝑟

𝜕𝑟2 +
1

𝑟

𝜕𝑢𝑟

𝜕𝑟
−

𝑢𝑟

𝑟2 +
𝜕2𝑢𝑟

𝜕𝑧2 ) −
𝜅

𝑑

𝜕ℕ

𝜕𝑧
−

1

𝑑

𝜕𝑝

𝜕𝑟
   

  (6) 

𝑢𝑟
𝜕𝑢𝑧

𝜕𝑟
+ 𝑢𝑧

𝜕𝑢𝑧

𝜕𝑧
= (

𝜇+𝜅

𝑑
) (

𝜕2𝑢𝑧

𝜕𝑟2 +
1

𝑟

𝜕𝑢𝑧

𝜕𝑟
+

𝜕2𝑢𝑧

𝜕𝑧2 ) +
𝜅

𝑑
(
𝜕ℕ

𝜕𝑟
+

ℕ

𝑟
) −

1

𝑑

𝜕𝑝

𝜕𝑧
   

  (7) 

𝑗 (𝑢𝑟
𝜕ℕ

𝜕𝑟
+ 𝑢𝑧

𝜕ℕ

𝜕𝑧
) =

𝛾

𝑑
(
𝜕2ℕ

𝜕𝑟2 +
1

𝑟

𝜕ℕ

𝜕𝑟
−

ℕ

𝑟2 +
𝜕2ℕ

𝜕𝑧2) +
𝜅

𝑑
(
𝜕𝑢𝑟

𝜕𝑧
−

𝜕𝑢𝑧

𝜕𝑟
) −

2𝜅ℕ

𝑑
   

  (8) 

For both disks, boundary conditions (B.Cs.)may be written as 
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𝑧 = ℓ:          𝑢𝑟 = 0,          𝑢𝑧 = 2𝑉,          ℕ = 0
𝑧 = −ℓ:         𝑢𝑟 = 0,            𝑢𝑧 = −2𝑉,         ℕ = 0

}     

  (9) 

Velocity field and microrotation field are required for solving problems, so 

we will solve Eq. (5)-Eq. (8) by using Eq. (5). Consider the following 

similarity transformation discussed by Karman [32] 

𝑢𝑟 = −𝑟ℱ′(𝑧)

𝑢𝑧 =     2ℱ(𝑧)

ℕ =  −𝑟 𝒢(𝑧)
}         

  (10) 

By using Eq. (10) in Eq. (5), we observe that similarity transformation 

satisfies the equation of continuity. Use Eq. (10) in Eq. (6) and Eq. (7) and 

after eliminating 𝑝, we get 

(𝜇 + 𝜅)ℱ𝑖𝑣 − 𝜅𝒢 ′′ − 2𝑑ℱℱ′′′ = 0       

  (11) 

On putting Eq. (10) in Eq. (8), we get 

𝛾𝒢 ′′ + 𝜅ℱ′′ − 2𝜅𝒢 + 𝑑𝑗(ℱ′𝒢 − 2ℱ𝒢 ′) = 0      

   (12) 

Karman [30] introducedthe dimensionless variables which are as follows 

𝑓(𝜉) =
ℱ(𝑧)

𝑉
,          ℊ(𝜉) =

ℓ2𝒢(𝑧)

𝑉
       

    (13) 

Where 𝜉 =
𝑧

ℓ
 is a dimensionless parameter. 

AfterusingEq. (13) in Eq. (11) and Eq. (12), we get 

𝑓𝑖𝑣 − 𝜆1ℊ
′′ − 2𝑅𝑜𝑓𝑓′′′ = 0       

   (14) 
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ℊ′′ + 𝜆2(𝑓
′′ − 2𝑔) − 𝜆3(2𝑓ℊ′ − 𝑓′ℊ) = 0      

  (15) 

Where 𝜆1 =
𝜅

𝜇+𝜅
 , 𝜆2 =

𝜅ℓ2

𝛾
, 𝜆3 =

𝑑𝑗ℓ𝑉

𝛾
, 𝑅𝑜 =

𝑑𝑉ℓ

𝜇+𝜅
 are vortex viscosity, spin 

gradient viscosity, micro-inertia density parameter and suction Reynolds 

number respectively. Since 𝑅𝑜 is proportional to 𝑉 therefore 𝑅𝑜 > 0 for 

suction and 𝑅𝑜 < 0 for injection. 𝑅𝑜 > 0has been considered in this study 

because of suction on both disks. 

By using Eq. (9), Eq. (10) and Eq. (13),the following B.Cs are as follows 

𝑓(−1) = −1,    𝑓′(−1) = 0,    ℊ(−1) = 0,   

 𝑓(1) = 1,        𝑓′(1) = 0,        ℊ(1) = 0      

  (16) 

To validate our model, we have to solve Eq (14) and Eq (15) by using 

boundary conditions (16). 

3. Methodology 

3.1Description of the Homotopy Perturbation Method 

To explain the basic concepts, we study the following equation 

𝐴(𝑢) − 𝑓(𝑟) = 0,         𝑟𝜖Ω       

   (17) 

with the boundary conditions of   

𝐵 (𝑢,
𝜕𝑢

𝜕𝑛
) = 0,          𝑟𝜖𝛿        

  (18) 

Where 𝐴(𝑢) is a general differential operator, 𝑓(𝑟) is a known analytic 

function, 𝐵 is a boundary operator and 𝛿 is a boundary of the domain Ω. 
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𝐴(𝑢)can be distributed into two parts where𝐿(𝑢) is linear and 𝑁(𝑢) is non-

linear. 

ThereforeEq. (17) can be rewritten as 

𝐿(𝑢) + 𝑁(𝑢) − 𝑓(𝑟) = 0,       𝑟𝜀Ω       

   (19) 

The HPM arrangement is as follows 

𝐻(𝜈, 𝜖) = (1 − 𝜖)[𝐿(𝜈) − 𝐿(𝑢0)] + 𝜖[𝐴(𝜈) − 𝑓(𝑟)] = 0    

  (20) 

Where 𝜈(𝑟, 𝜖): Ω × [0,1] → 𝑅       

  (21) 

In Eq. (21), 𝜖 is an embedded parameter which lies between [0,1] and 𝑢0 is 

the first approximation that satisfies the B.Cs. 

In the power of 𝜖, solution of Eq. (20) can be written as  

𝜈 = 𝜈0 + 𝜖𝜈1 + 𝜖2𝜈2 + ………. 

And the best estimation for the solution is  

𝑢 = lim
𝜖→1

𝜈 = 𝜈0 + 𝜈1 + 𝜈2 + ………. 

3.2 Application of Homotopy Perturbation Method 

Initially define 𝑃1(𝑓) and 𝑃2(ℊ) for solving Eq. (14) and Eq. (15) 

𝑃1(𝑓) = 𝑓𝑖𝑣 − 𝜆1ℊ
′′ − 2𝑅𝑜𝑓𝑓′′′       

  (22) 

𝑃2(ℊ) = ℊ′′ + 𝜆2(𝑓
′′ − 2𝑔) − 𝜆3(2𝑓ℊ′ − 𝑓′ℊ)     

  (23) 

Now divide 𝑃1(𝑓) and 𝑃2(ℊ) into two parts 
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𝐿(𝑓) + 𝑁(𝑓) − 𝑈1(𝑟) = 0, 𝐿(ℊ) + 𝑁(ℊ) − 𝑈2(𝑟) = 0 

Where 𝐿(𝑓), 𝐿(ℊ) are linear parts and 𝑁(𝑓),𝑁(ℊ) are nonlinear parts of Eq. 

(14) and Eq. (15). 

𝐿(𝑓) = 𝑓𝑖𝑣,  𝑁(𝑓) = −𝜆1ℊ
′′ − 2𝑅𝑜𝑓𝑓′′′     

  (24) 

𝐿(ℊ) = ℊ′′,       𝑁(ℊ) = 𝜆2(𝑓
′′ − 2𝑔) − 𝜆3(2𝑓ℊ′ − 𝑓′ℊ)    

  (25) 

By the homotopy technique, we construct a homotopy which satisfies 

𝑀1(𝑓, 𝜖) = (1 − 𝜖){𝐿(𝑓) − 𝐿(𝑓0)} + 𝜖{𝑃1(𝑓) − 𝑈1(𝑟)} = 0     

  (26) 

𝑀2(ℊ, 𝜖) = (1 − 𝜖){𝐿(ℊ) − 𝐿(ℊ0)} + 𝜖{𝑃2(ℊ) − 𝑈2(𝑟)} = 0     

 (27) 

Where 𝜖 lies between 0 and 1. 𝑓0, ℊ0arean initial approximation which 

satisfies boundary conditions and  𝑈1(𝑟), 𝑈2(𝑟) are any analytical functions. 

Now consider the approximate result of Eq. (26) and Eq. (27) in the power 

series as follows: 

𝑓(𝜉) = ∑ 𝑓𝑖𝜖
𝑖∞

𝑖=0 = 𝑓0(𝜉) + 𝜖𝑓1(𝜉) + 𝜖2𝑓2(𝜉) + 𝜖3𝑓3(𝜉) + ………….   

  (28) 

ℊ(𝜉) = ∑ ℊ𝑖𝜖
𝑖∞

𝑖=0 = ℊ0(𝜉) + 𝜖ℊ1(𝜉) + 𝜖2ℊ2(𝜉) + 𝜖3ℊ3(𝜉) + ………….  

  (29) 

For the best approximation for a solution at 𝜖 → 1is    

𝑓(𝜉) = 𝑓0(𝜉) + 𝑓1(𝜉) + 𝑓2(𝜉) + 𝑓3(𝜉) + ………….     

  (30) 

ℊ(𝜉) = ℊ0(𝜉) + ℊ1(𝜉) + ℊ2(𝜉) + ℊ3(𝜉) + ………….    

 (31) 
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Using Eq. (24)-Eq. (29) and after simplification, we get 

Coefficient of 𝜖0:  

𝑓0
𝑖𝑣 = 0,         

  (32) 

ℊ0
′′ = 0          

  (33) 

Coefficient of 𝜖1: 

𝑓1
𝑖𝑣 − 𝜆1ℊ0

′′ − 2𝑅𝑜𝑓0𝑓0
′′′ = 0,       

  (34) 

ℊ1
′′ + 𝜆2(𝑓0

′′ − 2ℊ0) − 𝜆3(2𝑓0ℊ0
′ − 𝑓0

′ℊ0) = 0     

  (35) 

Coefficient of 𝜖2:  

𝑓2
𝑖𝑣 − 𝜆1ℊ1

′′ − 2𝑅𝑜(𝑓1𝑓0
′′′ + 𝑓0𝑓1

′′′) = 0      

 (36) 

ℊ2
′′ + 𝜆2(𝑓1

′′ − 2ℊ1) − 𝜆3(2𝑓0ℊ1
′ + 2𝑓1ℊ0

′ − 𝑓0
′ℊ1 − 𝑓1

′ℊ0) = 0  (37) 

Coefficient of 𝜖3:  

𝑓3
𝑖𝑣 − 𝜆1ℊ2

′′ − 2𝑅𝑜(𝑓0𝑓2
′′′ + 𝑓1𝑓1

′′′ + 𝑓2𝑓0
′′′) = 0     

  (38) 

ℊ3
′′ + 𝜆2(𝑓2

′′ − 2ℊ2) − 𝜆3(2𝑓0ℊ2
′ + 2𝑓1ℊ1

′ + 2𝑓2ℊ0
′ − 𝑓0

′ℊ2 − 𝑓1
′ℊ1 − 𝑓2

′ℊ0) = 0 

 (39) 

Solve Eq. (32)-Eq. (39) under the following boundary conditions: 

𝑓0(−1) = −1, 𝑓𝑛(−1) = 0 ∀𝑛 ≥ 1,    𝑓𝑛
′(−1) = 0  ∀𝑛 ≥ 0,   ℊ𝑛(−1) = 0  ∀𝑛 ≥ 0

𝑓0(1) = 1,       𝑓𝑛(−1) = 0 ∀𝑛 ≥ 1,        𝑓𝑛
′(1) = 0  ∀𝑛 ≥ 0,        ℊ𝑛(1) = 0  ∀𝑛 ≥ 0

} 
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After simplification, we get 

𝑓0(𝜉) =
1

2
(−𝜉3 + 3𝜉), 

ℊ0(𝜉) = 0, 

𝑓1(𝜉) = 𝑅𝑜 (
𝜉7

280
−

3𝜉5

40
+

39𝜉3

280
−

19𝜉

280
), 

ℊ1(𝜉) =
𝜆2

2
(𝜉3 − 𝜉), 

𝑓2(𝜉) = −
3𝑅𝑜

2𝜉11

30800
+

𝑅𝑜
2𝜉9

420
−

177𝑅𝑜
2𝜉7

9800
+ 𝜉5 (

17𝑅𝑜
2

700
+

𝜆1𝜆2

40
) −

𝜉3

6
(
443𝑅𝑜

2

21560
+

3𝜆1𝜆2

10
) +

𝜉 (
𝜆1𝜆2

40
−

137𝑅𝑜
2

26950
). 

ℊ2(𝜉) = −𝜉7 (
𝜆2𝜆3

56
+

𝑅𝑜𝜆2

280
) + 𝜉5 [

3𝜆2𝑅𝑜

40
+

𝜆2
2

20
+

7𝜆2𝜆3

40
] − 𝜉3 [

𝜆2𝜆3

8
+

117𝜆2𝑅𝑜

840
+

𝜆2
2

6
] +

𝜉 [
7𝜆2

2

60
−

9𝜆2𝜆3

280
+

19𝑅𝑜𝜆2

280
]  

The value of 𝑓3(𝜉) and ℊ3(𝜉) are too lengthy to be mention. So we will get 

the final value of 𝑓(𝜉) and ℊ(𝜉) after substituting the values of 𝑓𝑖, ℊ𝑖 (𝑖 =

0,1,2,3)in the following equations, 

𝑓(𝜉) = 𝑓0(𝜉) + 𝑓1(𝜉) + 𝑓2(𝜉) + 𝑓3(𝜉) + ………….     

  

ℊ(𝜉) = ℊ0(𝜉) + ℊ1(𝜉) + ℊ2(𝜉) + ℊ3(𝜉) + ………….  

To validate the present result of the study, the comparison between the results 

achieved by HPM and numerical results is done. The error of results for a 

specific value has been shown in Table 1-Table 3 which gives a good 

agreement between HPM and NM results. The comparison has been 

presented graphically in Fig (2)-Fig (4).  
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Table 1 Error of HPM and NM for 𝑓(𝜉) when   Table 2 Error of HPM and NM for 𝑓′(𝜉) when 

𝜆1 = 1.5, 𝜆2 = 1.8, 𝜆3 = 1.2, 𝑅𝑜 = 1𝜆1 = 1.5, 𝜆2 = 1.8, 𝜆3 = 1.2, 𝑅𝑜 = 1 

𝝃 HPM NM Error 
-1 0 0 7.3E-18 

-0.9 0.2951932149 0.296756783 0.001563568 

-0.8 0.5587856394 0.559608974 0.000823334 

-0.7 0.7873624795 0.786199699 0.001162781 

-0.6 0.9798529871 0.976902394 0.002950593 

-0.5 1.1369226246 1.133401224 0.003521401 

-0.4 1.2603979986 1.25781949 0.002578508 

-0.3 1.3527157853 1.352222072 0.000493713 

-0.2 1.4164073120 1.418352117 0.001944805 

-0.1 1.4536454581 1.45750351 0.003858051 

0 1.4658874599 1.470465722 0.004578262 

0.1 1.4536454581 1.45750351 0.003858051 

0.2 1.4164073120 1.418352117 0.001944805 

0.3 1.3527157853 1.352222072 0.000493713 

0.4 1.2603979986 1.25781949 0.002578508 

0.5 1.1369226246 1.133401224 0.003521401 

0.6 0.9798529871 0.976902394 0.002950593 

0.7 0.7873624795 0.786199699 0.001162781 

0.8 0.5587856394 0.559608974 0.000823334 

   0.9 0.2951932149 0.296756783 0.001563568 

 1 0 0 7.3E-18 

 

Table 3 Error of HPM and NM for ℊ(𝜉) when 𝜆1 = 1.5, 𝜆2 = 1.8, 𝜆3 = 1.2, 𝑅𝑜 = 1 

𝝃 HPM NM Error 
-1 0 0 6.7E-18 

-0.9 0.1554935842 0.157088996 0.001595412 

-0.8 0.2381682428 0.240666167 0.002497924 

-0.7 0.2725667090 0.274147109 0.0015804 

-0.6 0.2750542429 0.273949253 0.00110499 

-0.5 0.2559607144 0.251355968 0.004604747 

-0.4 0.2216035509 0.214031097 0.007572454 

-0.3 0.1759852735 0.167164678 0.008820595 

-0.2 0.1220499366 0.114305126 0.00774481 

-0.1 0.0624686661 0.057954454 0.004514213 

0 0.0000000000 0.0000000000 0.0000000000 

0.1 -0.0624686661 -0.057954454 0.004514213 

0.2 -0.1220499366 -0.114305126 0.00774481 

0.3 -0.1759852735 -0.167164678 0.008820595 

0.4 -0.2216035509 -0.214031097 0.007572454 

0.5 -0.2559607144 -0.251355968 0.004604747 

0.6 -0.2750542429 -0.273949253 0.00110499 

0.7 -0.2725667090 -0.274147109 0.0015804 

0.8 -0.2381682428 -0.240666167 0.002497924 

   0.9 -0.1554935842 -0.157088996 0.001595412 

 1 0 0 6.7E-18 

 

 

Fig (2) Comparative graph of NM and HPM       Fig (3) Comparative graph of NM and  

for𝑓(𝜉)     HPM for 𝑓′(𝜉) 

𝝃 HPM NM Error 
 1 -1 -1 0 

-0.9 -0.9849986302 -0.9849002949 9.83353E-05 

-0.8 -0.9420180521 -0.9417840931 0.000233959 

-0.7 -0.8744112850 -0.8741901514 0.000221134 

-0.6 -0.7857503592 -0.7857418041 8.5551E-06 

-0.5 -0.6796226707 -0.6799502401 0.000327569 

-0.4 -0.5594863165 -0.5601308161 0.0006445 

-0.3 -0.4285817543 -0.4293864903 0.000804736 

-0.2 -0.2898969571 -0.2906283121 0.000731355 

-0.1 -0.1461812590 -0.1466147921 0.000433533 

0 0.0000000000 0.0000000000 0.0000000000 

0.1 0.1461812590 0.1466147921 0.000433533 

0.2 0.2898969571 0.2906283121 0.000731355 

0.3 0.4285817543 0.4293864903 0.000804736 

0.4 0.5594863165 0.5601308161 0.0006445 

0.5 0.6796226707 0.6799502401 0.000327569 

0.6 0.7857503592 0.7857418041 8.5551E-06 

0.7 0.8744112850 0.8741901514 0.000221134 

0.8 0.9420180521 0.9417840931 0.000233959 

   0.9 0.9849986302 0.9849002949 9.83353E-05 

 1 1 1 0 
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Fig (4) Comparative graph of NM and HPM for ℊ(𝜉) 

4. Results and Discussion 

The behavior of 𝑓(𝜉), 𝑓′(𝜉) and ℊ(𝜉) at the several values of suction 

Reynolds number (𝑅𝑜), vortex viscosity (𝜆1), spin-gradient viscosity (𝜆2) 

and microrotation density (𝜆3) are discussed in Fig (5)-Fig (16).    

 

Fig (5) 𝑓(𝜉) for several values of𝑅𝑜  Fig (6) 𝑓′(𝜉)for several values of 𝑅𝑜 
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Fig (7) ℊ(𝜉)for several values of 𝑅𝑜 

 

The influence of different values of suction Reynold number 𝑅𝑜 =

0.5, 1, 1.5when 𝜆1 = 1.5, 𝜆2 = 1.8, 𝜆3 = 1.2 on the flow velocities and 

microrotation profile are investigated in Fig (5)-Fig (7). Fig (5) depicts that 

normal velocity increases with an increase in 𝑅𝑜 near the lower disk while it 

decreases with an increase in 𝑅𝑜 near the upper disk. It can also be observed that 

normal velocity reaches its value 1 at the upper disk and decreases to −1 at the 

lower disk. Also, normal velocity changes its concavity near 𝑧 = 0. Fig (6) 

investigates that 𝑓′(𝜉) follows a parabolic path. Also, it increases near both disks 

with an increase in 𝑅𝑜 while near the central plane it decreases with an increase 

in 𝑅𝑜. It can also be noted that streamwise velocity achieves its maximum at the 

central plane. Fig (7) depicts that microrotation decreases with an increase in 𝑅𝑜 

near the lower disk while it increases with an increase in 𝑅𝑜 near the upper 

disk.Also, its behavior is symmetric and reversed along 𝑧 = 0. 
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Fig (8) 𝑓(𝜉)for various values of𝜆1  Fig (9) 𝑓′(𝜉)for various values of 𝜆1  

 

Fig (10) ℊ(𝜉)for various values of 𝜆1 

Fig (8)-Fig (10) display the effect of various values of the vortex viscosity 

parameter 𝜆1 = 0.5, 1, 1.5 when 𝑅𝑜 = 1, 𝜆2 = 1.8, 𝜆3 = 1.2on 𝑓(𝜉), 𝑓′(𝜉) and 

ℊ(𝜉) respectively. Fig (8) shows no significant change in normal velocity for 

different values of 𝜆1. Fig (9) indicates the behavior of streamwise velocity 𝑓(𝜉). 

A parabolic nature in the velocity component can be seen from this figure. Near 

both disks, a small decrement in magnitude can also be observed with an increase 

in vortex viscosity parameter (𝜆1). But near the central plane (𝑧 = 0) streamwise 

velocity (𝑓′(𝜉)) increases with an increase in 𝜆1. Fig (10) shows that 
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microrotation increases near the lower disk while it decreases near the upper disk 

with an increase in 𝜆1. 

 

Fig (11) 𝑓(𝜉)for various values of 𝜆2  Fig (12) 𝑓′(𝜉)for various values of 𝜆2 

 

 

Fig (13) ℊ(𝜉)for various values of 𝜆1 

Fig (11)-Fig (13) display the influence of 𝜆2 on both velocity component and 

microrotation profile. Fig (11) shows that there is no significant change in 𝑓(𝜉) 

by changing spin-gradient viscosity 𝜆2. Fig (12) investigates that 𝑓′(𝜉) decreases 

with an increase in 𝜆2 near both disks, while near 𝑧 = 0, velocity increases with 

an increase in 𝜆2. Fig (13) displays the behavior of microrotation ℊ(𝜉) which 
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tells that near the lower disk microrotation increases with an increase in 𝜆2 

whereas its behavior is reversed near the upper disk. 

 

 

Fig (14) 𝑓(𝜉)for various values of 𝜆3  Fig (15) 𝑓′(𝜉)for various values of 𝜆3 

 

Fig (16) ℊ(𝜉)for various values of 𝜆3 

Fig (14)-Fig (16) depict the effect of the microrotation density parameter 𝜆3 on 

𝑓(𝜉), 𝑓′(𝜉) and ℊ(𝜉) respectively. Fig (14) shows that no change in 𝑓(𝜉)on 

changing 𝜆3. Fig (15) investigates the parabolic behavior of 𝑓′(𝜉). Also,𝑓′(𝜉) 

has no change in varying 𝜆3. Fig (16) investigates that the behavior of the 

microrotation profile is symmetric but opposite along the central plane 𝑧 = 0. It 

is clear from this figure that ℊ(𝜉) increases with an increase in 𝜆3 near the lower 
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disk while near the central plane ℊ(𝜉) decreases with an increase in 𝜆3. Its 

behavior is reversed near the upper disk. 

5. Conclusion 

In this paper, micropolar fluid flow between two porous disks is solved by HPM. 

The obtained results are compared with numerical results. The author makes the 

following conclusion: 

• The performance of normal, streamwise velocities and the microrotation are 

similar for various parameters. 

• The streamwise velocity escalates at the points which are nearby𝑧 = 0 with an 

increase in vortex-viscosity (𝜆1), spin-gradient viscosity (𝜆2), micro-inertia 

density (𝜆3). 

• The streamwise velocity falls nearby𝑧 = 0 with a rise in suction Reynolds 

number 𝑅𝑜 . 

• Results show an acceptable agreement between HPM results and numerical 

method results. 

• The error shows that HPM is a better approach for solving nonlinear ordinary 

differential equations. 
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