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ABSTRACT 

The concept of orthogonal polynomial matrices are introduced. Some properties and 
characterization for polynomial orthogonal matrices are obtained. 
 

I. Introduction 

In matrix theory, we come across some special types of matrices and two 

among them are symmetric matrix and orthogonal matrix. The term orthogonal 

matrix was used in 1854 by Charles Hermite in the Cambridge and Dublin 

Mathematical Journal, although it was not until 1878 that the formal definition 

of an orthogonal matrix was published by Frobenius. An orthogonal matrix is 

the real specialization of a unitary matrix and thus always a normal matrix. 

Orthogonal matrices are important for a number of reasons, both theoretical and 

practical. 
A  matrix   A ()  is  said  to  be  a  Polynomial  matrix  if  all  entries   of    A ()

 are  

polynomials.Polynomials and polynomial matrices arise naturally as modeling 

tools in several areas of applied mathematics, science and engineering, 

especially in systems theory [2], [4], [5]. 

In this paper we have introduced polynomial orthogonal matrix and extend 

some properties of orthogonal matrices to orthogonal polynomial matrices. 

 

I. Preliminaries 
Definition 2.1 [1] 

 A matrix A is defined to be a rectangular arrangement of mn numbers 

arranged in m rows and n columns. If m = n the matrix is a square matrix. AT is 

a matrix obtained from A by interchanging its rows into columns. If AT = A then 

A is said to be symmetric. A is said to be involutory if A2 = I . It is orthogonal. If 

AAT = AT A = I . It is evident that orthogonal matrices are symmetric and 

determinant value of an orthogonal matrix is unity. 
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Definition 2.2 [2] 

A matrix A () is said to be a polynomial matrix if all entries of A() are 

polynomials. 

Definition 2.3 [3] 

A square polynomial matrix A () is said to be symmetric if A () = 

A()T   in other words all the coefficient matrices of  A() are symmetric. 

We state here some theorems without proof as they appeared earlier. 

Definition 2.4 [1] 
If A and B are two square orthogonal matrices, then 
(i) AB is an orthogonal matrix. (ii) A+B is not an orthogonal matrix. 
Theorem 2.5 
 
If A is orthogonal then det A = 1. 
 

III. Polynomial Orthogonal Matrix 

 Definition 3. 1 
A polynomial orthogonal matrix is a polynomial matrix whose 

coefficient matrices are orthogonal. 
Example 3. 2 
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Theorem 3.3 

A polynomial orthogonal matrix is always symmetric. 

Proof 

Let 
n

nAAAAA  ++++= ...........)( 2

210  be polynomial orthogonal 

matrix. Here coefficient matrix sAi '  are orthogonal matrices. 

Since orthogonal matrices are symmetric, the coefficient matrices of )(A  are 

all symmetric. 

Hence )(A is a symmetric matrix. 

Example 3.4 
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Here 210 ,, AAA are orthogonal. 

Also 221100 ,, AAAAAA
TTT

=== . 

That is 210 ,, AAA  all are symmetric. 

Hence )(A is symmetric. 

Theorem 3.5  

If )(A is a nn  polynomial orthogonal matrix, then all of its coefficient 
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matrices are involutory. 

Proof 

Let 
n

nAAAAA  ++++= ...........)( 2

210  be polynomial orthogonal 

matrix. Here coefficient matrix sAi '  are orthogonal matrices. 

That is, ..................2,1,0 niforIAAAA i
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That is, ..................2,1,0 niforIAA i
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Hence each iA  is involutory.                                  
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Hence all coefficient matrices 10 , AA are  involutory . 

Theorem 3.7 

If )(A  is a polynomial orthogonal matrix if and only if  TA )(  is 

polynomial orthogonal matrix. 

Proof 
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n
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matrix. Here coefficient matrix sAi ' are orthogonal matrices. That is 

.
..............................
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,
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Similarly we can prove the converse. 

Example 3.8 

 Consider the orthogonal polynomial matrix, 
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If )(A  is a polynomial orthogonal matrix then determinant of )(A  is a 

polynomial in  

Example 3.10 
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Hence determinant of a polynomial orthogonal matrix is always polynomial. 

(ii)  Let  
0
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Hence determinant of a polynomial orthogonal matrices is a polynomial. 

Remark 3.11 

The product of two polynomial orthogonal matrices is not be orthogonal. 

For, Let )(A  and )(B  be  two polynomial orthogonal matrices. 

Let 
n
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To prove )(A  and )(B  orthogonal. 
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By the theorem (2.4) product of two orthogonal matrices are orthogonal. 

So 00BA  is orthogonal matrix. But the second term of the above equation is not 

possible. Because sum of the two orthogonal matrices need not be orthogonal. 

Hence the product of two polynomial orthogonal matrices need not be  

orthogonal. 

                                               IV. Conclusion 

Here we have extended some properties of orthogonal matrices to 

polynomial orthogonal matrices. All other properties can also be extended in a 

similar way. 
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