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ABSTRACT

In this paper, the expanded H!-Galerkin mixed finite element method is proposed for parabolic
integro-differential equations with nonlinear memory. The fully discrete error estimates based on
backward Euler method are obtained. Moreover, the optimal a priori error estimates in L? and H?-
norm for the scalar unknown u and the error results in L?-norm for gradient o, and its flux q are
derived. Finally, numerical results are presented to confirm our theoretical analysis.

1. INTRODUCTION
In this paper, we consider the following parabolic integro-differential equation with memory:

t

ur — Au + j K(t — s){—V- (a(x, wVu + B(x,u) +y(x,u) - Vu + g(x, u))} =f(x,t), (x,t) EQXx]

u(x,t) =0, (x,t) €00 X ], (1.1)
u(x,0) = uy(x), x € Q,

Where, Q be a bounded polygonal domain R%, (d = 1,2,3) with a smooth boundary 9Q. ] =
(0,T] isthe time interval with 0 < T < oo, suppose that the kernel k be positive definite as well
as a smooth neither nonsmooth memory and f is a known function. Let the function a(u) is a
tensor function, B(u) and y(u) are vector functions and g(w) is scalar function. Then the
functions a(u), B(u),y(u) and g(u) are continuously differentiable with respect to any variable
also smooth and bounded. We consider that y(0) = 0 and g(0) = 0.

Parabolic integro-differential equations with nonlinear memory are kind important of partial
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integro-differential equations, and have a many of applications in physical processes, such as the
heat conduction and viscoelasticity in materials with memory[1, 2], to this type of equations, the
approximating of solutions has been found by both finite element method in [3-5] finite deference
method in [6] for the linear and nonlinear equations. recently, a lot of new numerical process
such as discontinuous Galerkin method [7] finite volume element method[8], mixed finite element
method[9], and a tow-grid method[10], have been proposed to solve PIDEs.

The traditional method has been studied and analyzed in [11] for parabolic integro-differential
problems, in this method, the LBB stability condition must be met for the mixed finite element
methods, which the select the choice of finite element spaces, in recent year, this problem was
overcome by suggesting H*-Galerkin mixed finite element method in [12] for partial parabolic
differential equations. Also in [13] Z. Zhuo et al proposed H-Galerkin mixed finite element
method with H!-Galerkin expanded mixed finite element method in one method for approximate
nonlinear hyperbolic equations of second order. The above method have a positive advantage, it is
can direct solve both the scalar unknown, its gradient and its flux. Also it suitable for the case
when the coefficient of the differential is a small tensor and does not need to be inverted. as well,
continuous and piecewise (linear and higher-order) polynomials it is allowed to use in these
formats in contrast to continuously differentiable piecewise polynomials required by standard H*-
Galerkin methods, and is free of LBB condition as required by the mixed finite element methods.
Certainly, this formulation has its own disadvantages such as it needs to deal with the large size
matrix.

The aim of this paper and on based [14] and [15] we will time discretization by Expanded H?-
Galerkin MFEM for parabolic integro-differential equation with nonlinear memory.

In this paper, we establish a fully-discrete for expanded H-Galerkin MFEM to the equation
(1.1). Here we introduce as follows:

q =Vu— [ k(t —s)(a(xwVu + B(xw))ds, and & = Vu.
For the time discretization, we consider the backward Euler method. An error estimates for the
unknown function, gradient function, and flux in L?-norms and H-norms are obtained.

Throughout this research, C will denote a generic positive constant which does not depend on
the spatial mesh parameter k. and time discretization parameter At, and & denotes an arbitrarily
small positive constant. we indicate to the natural inner product in L?(Q) or (L? (Q))2 by (-,) with
norm ||+||;2¢qy, In [16, 17] the other notations and definitions are used of Sobolev spaces. Let X be
a Banach space and (t): [0,T] — X, we set

tn—1

WOl 2y = f lW@Olzds, Y@l = ess OS<lt1£)T||1/J||x
. st<

2. The Weak Formulation

For simplicity of notation, we put a(x,u) = a(w) ,B(x,u) = f(w), y(x,uw) =y@), glx,u) =g,
q=Vu- fot k(t — s)(alx,w)Vu + B(x,w))ds, and ¢ = Vu, then equation (1.1) we can rewritten

as

t \
@ w-eq+ [Ke-)(@ o+ g)ds=F,
0
(b) o=y, , L (2.1)
(c) gq=0— f k(t— s)(a(u)a + ﬁ(u))ds,
0
(d) u(x,0) =uy(x). J
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After that weak form of the above equations is find (u, &, q) € Hj(Q) x W x W such that
t )
(@) (6,p)+(V-q.V-p) - fk(t—s)(y(u)-o+g(u))ds.\7-p =(f,V-p),
0
(b) (o,Vv) = (Vu, Vv), t s (2.2)
(c) (qw) =(o,w) — fk(t —s)(a(wo + B(w))ds,w |,
0

(d) 6(0) = Vuo (%), J
where, Vp e W, v € V and

W = H(div,0) = {w e (L2(@)*":v-we 2@},
V=HY{Q) ={veH'(Q):v=0 On 00}

3. The Fully-Discrete Expanded H!-Galerkin Mixed Finite Element Method
Scheme (MFEM)

Let V,, W, are be finite dimensional subspaces of H3(Q) and H(div, ), respectively, which
satisfy the following approximation properties [18, 19]:

inf lv—v, l+hlIlv—v, I,<ch™ 1V, v e H™(Q),
VREV
d
: _ < pk+l ( k+1 )
nf 1P =P, IS ch P,y p, €\ HT @), 131
d
. _ k+1 k+1
inf 117, (p-p,) I<ch™Mlipl,, P, € (H (ﬂ)) :

where m, k are integers.
For the time discretization, we look the backward Euler method, let 0 = t° <t << tN =T, be

a given partition of the time interval [0, T] with step length At = % for some positive integer N.

Define t™ = nAt, ¢ = (¢™), 0,0™ = (¢p™ — ¢ 1) /At for smooth function ¢. To approximate
the integral, we introduce the right rectangle quadrature rule.

n-1 n
@) =Y by = [ K(en = )95)s, (32)
where k,,_; = k(t, —s). The quadggure error ’
tn
R@) =" @) - [ klen = )p@)ds, (33)
0
holds .
IR™($)] < CAtj ()] + 1pe(s)Dds, (3.4)
0

Where k, ¢ € C[0,T].
The formula equivalent to the weak formula (2.2) we can write the following:
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\
(@) (8,0™p)+(V-q"V-p) - Atz kn_jy(u(tj))-a’)v-p
- AtZk i g u( ) V-p |= (V- -p)+ (RM4R} + RLV - p),
(b) (o™ ,Vv) = (Vu", Vv), > (3.5)
n—1
© @w)=(a"w)— | ac) kyya(u(t))ow
j=0
- AtZk _]B u( ) w |+ (R} + RE, w),
J
where Vp € W, Vv € V and
tn
n _— n — 1
R} =0,0" — 0, = Ar f (t, — s)oyds,
th—1
n-1 n n
RE =8t Y kusyy (u(t) 07 - f k(t — $)y(u) - o(2)dt = CA f (6@)| + o (@) dr,
j=0 0

tn

= At 2 kn_jg u(t )) f k(t —s)g(u)dr,

tn tn

R} = At Z n—j @ u(t ) O'J f k(t —s)a(w)o(t)dt = CAtf (le(®)| + |lo:(T)])dr,
j=0 0

0

-1 tn
_ Atz ey B (u(t))) - f k(t — $)B(w)dr.
L J

]_
Then, we give a fully discrete method: find (up, o3,q%) € Vi, X W, X Wy, (n = 0,1,2,...,M — 1),
such that

n-1
(@) (0c0%,pr) + (V- qp, V- -pp) = | At Z kn—jy (uh(fj)) -0,V Pn
j=0
n-1
(86> kg g (un()). V- pu |+ 0,
j=0
(b) (0}, Vvy) = (Vul, V),  (4.5)
n-1
© (qhwn) = (of.wp) — | At Y koo (un(t))) of, wy
j=0
n-1
—| At Z kn—j ﬁ (uh(tj)) yWhr ),
j=0 J

where Vp, € W, , v, €V, and
To determine the required error estimates, we introduce the following projection operators.
(i) From [20], let I,: H} (Q)— V), be the Ritz projection defined by:

(V(u - Ihuh),Vvh) = 0, Vvh € Vh' (37)
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which the following results hold:

lu— Tl +h I V(u— Lw) 1S CA™ |l w llpgq - (3.8)
(it) From [21], let Ry: H(div, Q) — W, be the Raviart-Thomas projection defined by:
(V-(q—Ruq),V'pn) =0, Vpr € Wy, (3.9)
we have the following approximation features:
I g — Rpg IS CR** 1 1l q llgs1, (3.10)
4. Convergence Analysis

Let
u(tn) - u;ll = u(tn) - Ihu(tn) + Ihu(tn) - u% =6"+ Cn
G(tn) - o-;ll = a(tn) - Iha(tn) + Iha(tn) - O-Z = ﬂn + (n
q(tn) — gy = q(tn) — 1hq(tn) + 1nq(t,) —qp = 0™ + &
Using (3.5) and (4.5) with help (3.7) and (3.9) at t = t,,, we get

(@ (8.5"p,) + (V-8 v -p,) =(0m"p,) + (RI+R3 + R%LV - p,) \
+ (0055 Ky (v () = 7 ((2)) ) 0.7 )
+(aexpt ke (y (uh(tj))) 0,V p,) + (BT ey (a (uh(t,-))) .V D)
+ (At Zj=i ke (9 (u()) - g (uh(fj)))'v ' Ph)'

(b) (Cnr Vvh) = (V(Tl, Vvh) + (Un; Vvh)' >(41)
() (" wn) = (" wp) = (", wp) — (6", wp)

- (At Y10 knej (a (u(tj)) —a (uh(tj))) d, wh)
- (AfZ}l;()l ky—j (05 (uh(tj)>)n] Wh) ( t2io ( (uh( ))) z, Wh)
+ (At Y ke ([3 (u(tj)) - B (uh(tj))> ) wh) — (R} + R, wy). )

Where Vpp, € Wy, v, € V,,. Note that

(V (u(tj)) ol —y (uh(tj)) ' "{1)
=y (u()) o' =7 (un(t))- vf+v(uh(t )) o/ =y (un(1) o}
= (v () =7 (w(®)))- &+ (un(®)) - (o’ - 7})
( (u(t )) (uh(t) ) o +y uh(t) (aj—lhaj+1haj—0']}'l)
) =7 ()
)-a)

yu

14

( () = v (un(t)) ) - o7 +v (wn(t) -1 +7 (un(t)) - &,

Similarly, we get

( (u(tj)) o’ —a(uh(t) o
- ( (u(tl)) -a (uh(tj))> o/ +a (uh(fj)) ‘7 +a (uh(tj)) . (j,

Theorem 4.1. suppose that uj = 1,(0), and 0 < J < N. Then there exists a positive constant C
independent of h and At such that for j = 0,1 the following estimate holds

() —whll, + laCer) = ahll, + o)) = ahll, < CHMm P840 (g gmasy + 1l oo

+||O'||Loo Hkt1 +||O't||Loo pk+1) | + CAt ”u”Lz g+ ||ut||L2 g+ ”utt”LZ ) )-
(HT) (H*T) (') () (')
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Proof. The estimates of §™,1™ and 8" are given in (3.8) and (3,10) at t = t,,, it is enough to
bound ¢™, {"and &™. We choose v, = ¢™ in (4.1(b)) to have

(Ve™, Ve™) = (¢, Ve™) + (™, V¢™), (4.2)
Applying Young’s inequalities on every term from terms to the above equation,
clVe™I + ellVg™IZ < clg™II* + llVg™ [I? + clln™|I* + &l Vg™ ||? (4.3)
Then
Vg™ 12 < CCllm™ 17 + 11§™11%) (4.4)
Since ¢"™ €V, ¢ HE(Q), then, ||Ic™|| < ¢lIV¢™]|, thus we can get the estimate ||¢™||
™12 < Clm™ 1 + 11§11, (4.5)

Here we estimate {™, taking p, = {™ in (4.1(a)) to obtain
1_
—atllc'"ll2 + V-V =0m" )+ RLV-T) + (R, V") + (R, V- {M),

+<Atzkn1( u(t)) = (w(5))) - o7 zn>+<mzkn,( uh(t))>-nf,v-{">
( Z i (@ (un(5))) 82,7 (">+<At2kn,( (u(t) - (uh(tj))),v-("> 46)

use the Cauchy Schwarz inequality and Young’s inequality to every term ,then

(V-8 VgD < IV-EMIIV-EH I < cllV- 717 + el V- ¢TI (4.7)
1(0:™, &™) < o™ IS I < cllogn™|I? + ell ¢ I (4.8)
|RT, V-8 < IRTINV - ¢ < clIRTII* + &llV - §"I|%. (4.9)
|(RS, V- ¢ < IRV - ¢"II < cllRFII* + IV - 3|2 (4.10)
I(R”.V IO < IRFINV - E*I < clRENZ + £llV - ™% (4.11)

-1

ALY Ky (y (u(t,-)) -y (uh(tj))> )

j
< coc (man +I¢7]l >+s||v TN (412)

S

o/|[lIv-¢"ll

( Z i (r (@) - (un(tf)))'a":V-z"> <o

I
-

Where ¢, depends on ||¢’|| and ¢, depends on k,_;, and since y(u) is Lipchitz continuous with
respect to u then y (u(tj)) =u(t;) also y (uh(tj)) = u,(t;)

n—1 n—1

2 ) k. ]( (uh(t)))-n",V-z" <cflacd k, ]( (uh(t)))-nf' llv -l
j=1 j=1
n-1
< ccycz | At ||11j||2 +&||V- Y% (4.13)
2C3 ]Zl
Where c; depends on y (ua(t;))
n—1 n—1
Atzkn_j(a(uh(tj))>(j,V'(n <cllac ) «, ]< (uh(t)))zf' Iv- ¢l
j=1 j=1
< ceye, AtZ”(j”Z rellv- g, (414)

Where c, depends on a (ux(t)),
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n—1

80 ) toy (9 (u()) — 9 (1)) " || < ces Atnzl:kn (9 (u(t)) ~ 9 (ne))) || 17570

j=1

\

n—

< cc, AtZ(||af||2+||cf||) ellv-glE. @as)

Since g(w) is Lipchitz continuous with respect to u then g (u(tj)) =u(t;) also g (uh(tj)) =
un(t)-

Substituting (4.7)-(4.15) into (4.6) we get

1 n|2 n 2 n 2 n||2 n 2 n2 nj|2 nj|2

Z0IEm I +c[[V- &7+ e[V - < cllaem™|[” + el S + cllRR® + cllRZ I + clIRE |

n—1 n—1
teerey | 6 ) AN+ 161 |+ ces | a6 ) I
=1 j=1

n—1 n—1
Fea | 86 ) NG |+ cer 86D AN+ I |+ ellv-¢llF (a16)

Then

n-1

1._ 2
Z Ol + V- &7 sC(IIamnllzﬂllez+||R3||2+IIR?“2+NZ(II6’II eI +AtZIIn I

J

+AtZII<7"II2 +ellM + ellv- ¢l (4.17)
using Taylor formula we can derive
tn tn
1
IRl < cae [Nloulds, oIl < cr2®0 = [ (o)l ds,
th—1 tn—l
-1 tn 2
|R2||? = Z n—j ¥ u(t fk(t—s)y (u( ))-a(r)dr
0

< C(At)? f (el + lluelBds

And
-1

e = [l S o0 (1) f (e~ g(w)dn

j=0

< c(at)? j (el + lluel2)ds,
[0}

Therefore, (4.17) becomes
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tTl
1._ 2
S0+ (V- €7 SC<h"“ f ()1 ds + At f llPds + A02 [ (Il + ul2}ds
tn 1 th—1 ]
n-—1
+ae Y ([l87]° + 1] +AtZ||n I +At2||(1|| +ellgMZ +ellV- QU (4.18)
j=1
So that
tn ty
llg™l1Z = llg™ 17 - or 1 ,
At +2|IV-§Mf<C| h loe(HNI? ds + At | llugll*ds
tn-1 th—1

n—1
(@072 f {Iull? + luel12)ds +AtZ(||sf||2 +151) +At2|w||2 a0 ) 191
j=1 j=1 j=1

(0] =
+ell§MIZ + ellv - ¢n1%. (4.19)
Then, multiplying by At of the above equation, we get
tn

tn
IS™MIZ = "~ HI? + 24tV - §MI* < Ch**? f lloc(s)11? ds + C(At)? f llueell?ds

th—1 th—1
o

+C(At)? f {lull® + llucli*3ds + C(At)ZZ(IIS’II2 + I+ 112 + 118117

+(9A1:||g'"||2 + eAt||v - ¢*|% (4.20)
Summing from n=1,2,...,J, we obtain

Igm12 + 24t Z 17 &711% < 13117 + CRF* ol ey + C(ALY? (Ilulle(m) el

] n-1

+||utt||§z(H1)) +c<At>ZZZ IS + 11671+ 11+ 16711°) + sAtZ(nc I°+1v-7112), 421

n=1 j=1
Putting (4.5) into (4.21) then using discrete Gronwall's lemma with ¢° = 0, we get

g2 + sznv EM112 < CR¥ lo I ey + CA? (ItlZaypny + ety

n=1
n-— 1

]
+Iluall >+C(At) Z |51| + ||| ) (4.22)

n=1j=1
after that, we obtain

137117 + ZAtZ”V &2 < Chk+1||0t|| L2(Hk+) +C(At)? (”u”LZ(Hl) + ”ut”LZ(Hl) +||utt||i2(H1)>

2(k+1)

2(m+1)
+ (R Dl o, + R P01 i ). (4.23)

then
[ +1,k+1
18711+ 286 [V &%) < € K™D (] o sy 10 o sy + 10l on o)

+C8E (Il 21y + el 241y + el 25 ). (4.24)
Substituting (4.24) into (4.5) to have
IIQ”II < Chmin(m+1,k+1) (||u||Loo(Hm+1) + ||O'||Loo(Hk+1) + ||O't||Loo(Hk+1))
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+CAt (Ilull gy + Ml 2y + lteellzny ). (4.25)
Choose wy, = &™ in (4.1(c)) to get
n-1
&8 = (&) - (8 - (07§ - (Atz ks (@ (u(8)) = @ (u (1) of,fn>
j=0

n—1

gseame) 3
+<Atz ky,— ]( uh( ,zn) (4.26)

using Young’s inequalities to (4.26), one has

kn-y (& (un())) zf,f”> — (R + R§,E™M

1§12 < CClla™I? + 1712 + 116™112) + ¢ AtZ||6f| +||cf||2+||nf||2+||<f||2>

=1
+C(IREN? + IRZNIZ) + ll&™]I2. (4.27)

Where

n—1 n 2

IREI = |[a¢ > oy (u(t)) o —j k(t — S)aw)o(T)dr
Jj=0 0
< C(Ar)? f lull? + lucl2ds
(0]

and

IRS|I" =

n—1 tn
86 Y kn-j B (u(ty) = [ ke = 9)paodr.
j=0 0

tn

< C(at)? f QM2 + lluel2)ds

0
Substituting the above inequalities into (4.27) one has

j=1

n—1
157117 < CUlm™ 12 + g™ 112 + 116™17) + € (Ar2||5f||2 +[s/1° + In]1” + ||<f||2>
tn

+C(At)? f {Ilull? + lluli?}ds + ell§™ 1. (4.28)

0
Setting (4.24) and (4.25) into (4.28) and applying Gronwall's lemma, we get
€™ < C pmin(m+1k+1) (||u||Loo(Hm+1) + ||q||Loo(Hk+1)+||0'||Loo(Hk+1) + ||O't||Loo(Hk+1))

+CAt (llulle(H1) + ||ut||L2(H1) + ||utt||L2(H1)). (4.29)
The use of the triangle inequality then (4.24), (4.25) and (4.29) with (3.8), (3.10) completes the proof.

Remark: C = C(cy, cq, €3, C3,Cq, AL ) ]

Table 1: The errors of u, o and q .

(h, At) Il u—up, IILOO(LZ(Q)) lo—op IILOO(LZ(Q)) Il q—qn IILOO(LZ(Q))
(1/4,1/2) 0.0011 0.0100 0.0150
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(1/8,1/4) 5.9374e-04 0.0040 0.0110
(1/16,1/8) 3.2062e-04 0.0020 0.0093
(1/32,1/16) 1.6768e-04 0.0010 0.0083

Table 2: The orders of convergence for u,o and q.

(h; At) ” Uu—up ”L°°(L2(Q)) " g — 0y ”Loo(LZ(Q)) " q—4qn "LDO(LZ(Q))
(1/4,1/2) 0.8896 1.3219 0.4475
(1/8,1/4) 0.8890 1.00 0.2422

(1/16,1/8) 0.9352 1.00 0.1644

5. Numerical Example

The aim of this section is to given a numerical example to illustrate our theoretical analysis results
obtained in Section 4. We consider the exact solution u for (1.1) is chosen as
u(xg, %25 8) = 21 (1 — x9)x,(1 — x2)e ™", and up(xq, x5 1) = 21 (1 — x1) (1 — x5)
Where Q = [0,1] x [0,1], ] = (0,2], k(t —s) = e~ 9, g(x,t) = sinu, a(x,t) =0,
B(x,t) = (sinu, 1 —cosw)?, y(x,t) = (1 —cosu, sinu )7, and
[, x258) = (2x (1 —x1) — %1 (1 — x)x2(1 — x3) + 2, (1 — x3)
+(1 = 2x)x,(1 — xx)t)e ™t — (1 — 2x1)x,(1 — xp)e ™t
t t

] cos(x;(1 —x)x,(1 —x,)e 5)ds + e‘tJ eSsin(x;(1 —x)x,(1 —x,)e ™ 5)ds

0 0

The domain Q is divided into the triangulations with grid size h,, = h, = hy = h uniformly, also
the time interval [0, T] was divided into N subintervals 0 =ty < t; < " <t, <-- < ty =T
with step length At = T /N for some positive integer N. And considering the mixed finite
element spaces V;, which consists of linear polynomials for the scalar unknown function u and the
author space W, consists of linear polynomials for the gradient o and its flux g and using the
backward Euler procedure. We get some convergence results for

Il u—up ”L°°(L2(Q))’ Il o—op ”L°°(L2(Q))’ lqg—qn ”L°°(L2(Q)) with h =1/4,1/8,1/16,1/32
and At =1/2,1/4,1/8,1/16 in Table 1, and we obtain the orders of convergence in Table 2. The
Figures in 1, 3, and 5 is shown exact solution of u, g, g, respectively, and the corresponding
Figures in 2, 4, and 6 is shown numerical solution uy, o3, q;, respectively.
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The Exact solutions
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0.006
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Figure 1: The exact solution of u att = 2.

The numerical solutions
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Figure 2: The numerical solution of uy, at t = 2.
The corresponding exact gradient is
0 = (01,0,) = (x1x67 (% — 1) + x1 327 (x; — D(x, — 1),
x1x%2e " (g — 1) + x3e7 (0 — 1) (x, — 1));
and its exact flux is
q = (q1,92) = (sin (x;x2e7 (x; — D(x, — 1) (e™F = 1)
X167 (= 1) + xe7 (e — D(x, — 1)), (67t — 1)
—cos(xyxe7 (e — Dy — D) (et = 1) + xyxe 7 H(x, — 1)
+xe7 (x, — 1) (x5, — 1)).
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The exact solution of o=(a,r,) at t=2 The sxact sclutlon of o={o ., At 1=2
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Figure 3: The exact solution of g, at t = 2.

The numerical solution of oht{a"‘.an) at t=2

y-axis

The numerical solution of .:_-(a‘h.u,h) at t=2

004
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y-componant
K a
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Figure 4: The numerical solution of o, at t = 2.

The exact solution of g=(q,.q,) at t=2 The exact solution of q=(q,.q,) at t=2
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Figure 5: The exact solution of g, at t = 2.
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The numerical solution of Q,,=(9,,,9,,) & =2 The numerical solution of q,'=(qm.qn_) at t=2

componant

(@) (b)

Figure 6: The numerical solution of g, at t = 2.

6. Conclusion

In this paper, expanded H!-Galerkin Mixed Finite Element Method is discussed for parabolic
integro-differential equations with nonlinear memory. This method could solve u,o and
q directly. The error estimates are derived fully discrete schemes. Certainly, the formulation has
its own disadvantages such as it needs to deal with the large size matrix. Finally, some numerical
results are provided to confirm our theoretical analysis.
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