PalArch's Journal of Archaeology of Egypt / Egyptology

MULTI-POPULATION CUCKOO SEARCH ALGORITHM FOR SOLVING GLOBAL PROBLEMS OF OPTIMIZATION

Mohamed Jawad Abdul Mohsen¹, Iraq T.Abbas¹

¹Department of Mathematics, College of Science, University of Baghdad.

Mohamed Jawad Abdul Mohsen, Iraq T.Abbas, Multi-Population Cuckoo Search Algorithm For Solving Global Problems Of Optimization, Palarch's Journal Of Archaeology Of Egypt/Egyptology 18(7). ISSN 1567-214x.

Keyword: Multi-Population, Cuckoo Search, Global Optimization.

Abstract:

The issues around us are getting more perplexing simultaneously and simultaneously our earth is controlling us to take care of these common issues. Nature offers us some intelligent and viable approaches to discover an answer for these issues. While program procedures for dealing with multi-population optimization problems (MPOPs) have been available for quite a while, the progressing usage of Evolutionary Algorithm (EAs) to such issues gives a vehicle which to handle very tremendous extension MPOPCS.

MPOPCS is a multi-populace CS calculation is proposed. While deterioration rearranges the multi-populace issue (MPPs) by revamping it as a bunch of Tchebycheff Approach, tackling these issues at the same time, inside the CS structure, may prompt untimely intermingling due to the pioneer choice cycle which utilizes the Tchebycheff Approach as a rule. Predominance assumes a significant part in building the pioneers file permitting the chose pioneers to cover less thick areas keeping away from nearby optima and bringing about a more assorted approximated Pareto front. Results from 35 standard MPPs show MPOPCS it beats some formative techniques dependent on multi-populace. All the outcomes were finished by MATLAB (R2017b).

1- Introduction:

This segment presents the current exploration. It contemplates the foundation of the investigation; express the exploration Populations, research question, meaning of the

examination, extension and limits of the examination and format the association of the proposal. Toward the end rundown of the part is given. An individual might want to amplify the opportunity of being solid and rich while as yet having a good time and time for loved ones. A computer programmer would be keen to discover the least costly test suite when ensuring complete integration (e.g., proclamation inclusion, branch inclusion and choice inclusion). While silently promoting radiotherapy for a disease, a doctor will need to change the tumor attack, the potential impact on strong organs, and the patient's overall condition. In multiple fields, these multi-populace enhancement problems (MOPs) can be used, with a related problem of looking for a few, sometimes interfacing, and targets simultaneously[1].

In multi-populace streamlining, generally there is no single ideal arrangement but instead a bunch of Pareto ideal arrangements. Normally, thickness assessment assumes a major part in the transformative interaction of multi-populace streamlining for a calculation to get an agent and different estimate of the Pareto front [2, 3].

In multi-populace enhancement, it is by and large saw that [2] the associate among vicinity and variety prerequisites is disturbed with the increment of the quantity of goals [4, 5,6] and [7] for a high-dimensional space, the Pareto strength loses its choice but performs admirably in a low-dimensional space. [8, 9, 10]. Enlivened by these two perceptions, bi-objective development changes over a given multi-populace enhancement issue into a bi (objective) improvement issue with respect to nearness and variety, and afterward handles it utilizing the Pareto strength connection in this bi-objective space.

Multi-Population Cuckoo Search Algorithm (MPOPCS) is proposed to discover the Pareto ideal set for multi-populace (MP) capacities by shifting loads [11].

To upgrade the inquiry capacity of the cuckoo search (CS) calculation, an improved strong methodology, called HS/CS, is advanced to address the streamlining issues. In HS/CS technique, In order to speed up intermingling, the contribution to change operation concordance check (HS) that can be considered as a transition administrator is applied to the engagement of the cuckoo refreshing. A few benchmarks are applied to check the proposed technique and it is shown that, as a rule, HS/CS performs in a way that is better than the standard CS and other near strategies. The boundaries utilized in HS/CS are likewise researched by different recreations [12].

A simple and convincing worldwide advancement calculation is the cuckoo search calculation (CS). A broad variety of certifiable enhancement problems have been addressed. The suggested approach uses two new rules of transition in this paper that depend on the rand and MCS individuals among the entire population. To adjust the abuse and investigation of the calculation, the new guidelines are joined through a straight diminishing likelihood rule. At that point, the establishment of self-versatile boundaries is described as a uniform erratic opportunity to update the population variety based on the total achievement number of the two new boundaries proposed in the past period. 16 benchmark capabilities of browsed writing are used to review the SACS exhibition. Test findings reveal that the suggested strategy does better than, or if nothing else matches, writing the best in class techniques while taking into account the essence of the arrangements. Tests on the Lorenz system and Chen framework were performed in the final part to determine the limits of these two clamorous systems. The findings of the reenactment also indicate that the planned approach is extraordinarily successful[13].

The creator proposes an enhanced and distinct adaptation of the Cuckoo Search (CS) calculation in[14] to take care of the well-known Traveling Salesman Problem (TSP), an NP-hard classified combinatorial enhancement problem. CS is a meta-heuristic calculation of inquiry that was generated late in 2009 by X in-She Yang and Susah Deb, inspired by the rearing action of the cuckoo fowl.

The work [16] proposes a self-versatile multi-populace based Jaya (SAMP-Jaya) calculation for tackling the compelled and unconstrained mathematical and designing enhancement issues. The Jaya calculation is an as of late proposed progressed enhancement calculation and isn't having any algorithmic-explicit boundaries to be tuned aside from the basic control boundaries of populace size and the quantity of cycles.

For the paper in[17], a combinatorial streamlining problem categorized as NP-hard is an improved and discrete version of the Cuckoo Search (CS) calculation to solve the celebrated Traveling Salesman Problem (TSP) present. CS is a meta-heuristic calculation of pursuit that was generated late in 2009 by Xin-She Yang and Suash Deb, driven by the actions of reproducing cuckoo fowl.

[18] Review the major thoughts of cuckoo search and the most recent advancements just as its applications. We examine the calculation and gain knowledge into its pursuit instruments and find out why it is efficient.

Two new transition rules based on the rand and MCS individuals within the entire population are included in another technique implemented for[20]. The updated criteria are joined by a straight declining probability law in order to change the misuse and investigation of the measurement.

Improves the open arrangement provided by[21] in the LR strategy demonstration, which was mostly observed with a high shift in the duality hole between the foundation and double arrangements. A Cuckoo Search Algorithm (CSA) is suggested as a cure to streamline the progress of the hole in the LR arrangement measure. The effects of replication emphasize that the produced LR-UC coordinating CSA upgrades the efficiency of the arrangement.

Another meta-heuristic advancement calculation, called cuckoo search calculation (CSA), is used to evaluate the ideal coefficients of the minimal incentive response fragmentary request separation (FIR-FOD) issue[27]. An updated cuckoo search calculation with uncomfortable sets is implemented to handle high

From the above pursuit we can proposed another strategy working with multi-populace Cuckoo Search (MPOPSC). A rudimentary issue that frequently emerges in an assortment of fields like example acknowledgment, AI, picture preparing and measurements is the multi-target enhancement issue, with the end goal that this field is a significant piece of exploratory MPOPCS calculation. Numerous calculations exist to conquer this issue. One of them is SPEAII. Yet, it has deficiency of stalling out in neighborhood optima. To get improved outcome we have moved to the utilization of meta-heuristic calculations. Meta-heuristics give the benefit of investigation and abuse in a hunt space. This prompts better worldwide and neighborhood search activity. In this paper, we present another calculation dependent on disintegration meta-heuristic

.calculation to limit computational endeavors of the field of multi-populace issue Dimensionality information through component choice are available in [22]. The modified estimate of the cuckoo hunt mimics the parasitic behavior of certain cuckoo species committing .brood in mix with some flying creatures' Lévy flight behavior A cross-breed meta-heuristic calculation paper [23], called biogeography-based heterogeneous cuckoo search (BHCS) calculation, is proposed to enhance boundary assessment of sun-oriented photovoltaic models.

They utilized in [25] another pursuit system dependent on symmetrical learning procedure to improve the abuse capacity of the fundamental cuckoo search calculation. To check the exhibition of our methodology.

The current examination intends to take care of the accompanying sorts of issues (without loss of over-simplification, the current investigation will expecting just minimization issues):

Minimize $f_i(x) = [f_1(x), f_2(x), ..., f_k(x)].$ (1.1)

Subject to:

$$g_i(x) \le 0, i = 1, ..., m;$$
(1.2)
$$h_j(x) = 0, j = 1, ..., p;$$
(1.3)

Where $x = [x_1; x_2, ..., x_n]^T$ is the vector of decision variables $f_i : R^n$ to R; i =

1, ..., k are the objective functions and g_i ; h_j : \mathbb{R}^n to \mathbb{R} , i = 1, ..., m, and j = 1, ..., m

1, ..., p are the constraint functions of the problem? To describe the MPOPs concept

of optimality, the researcher introduces the following definitions:

Definition 1[1]: (Multi-Populace Improvement Issue (MPOP)).

A MOP incorporates a bunch of n boundaries (choice factors), a bunch of m target capacities, and a bunch of k requirements. Target capacities and imperatives are elements of the choice factors. The improvement objective is to:

Where $x = (x \ 1; x \ 2; ...; xn) x$ and y = (y1; y2; ...; ym) y and x are referred to as the selection vector, y is the population vector, X is referred to as the selection space, and Y is referred to as the population space.

The e(x) ?? O criteria specify the arrangement of practicable agreements.

Definition 2[1]: (Pareto-dominance).

For any two vector options a and b,

a > b (a rules b) iff f(a) < f(b)

a > b (a pitifully rules b) iff $f(a) \le f(b)$

a ~ b (an is apathetic regarding b) iff $f(a) \ge (b) \land f(b) \ge f(a)$

The relations =, \leq and < on populace vectors are defined in this description as follows:

Definition3[1]: (Pareto-optimality)

A choice vector $x \in Xf$ is supposed to be non-ruled with respect to a set

$A \subseteq Xf iff \nexists a \in A : a > x$

On the unlikely case that it is clear from the atmosphere that is inferred, it can only be dismissed in the corresponding sense. Furthermore, x is expected to be Pareto-ideal with regard to Xf, iff x is non-ruled.

The sum of all Pareto-ideal centers is referred to as the Pareto-ideal set; the Pareto-ideal front or surface is structured by the associated population vectors.

Definition4 [2]: Pareto frontierThe Pareto wilderness or Pareto collection for a given framework is the collection of meanings (assignments) which are all efficient for Pareto. In designing, finding Pareto boondocks is highly useful. A fashioner will make clustered concessions within this compelled collection of limits by yielding the entirety of the conceivably perfect structures, as opposed to expecting to accept the maximum spectrum of limits[15]

The Pareto wilderness, P(Y), could be interpreted as follows, all the more officially. Think of a work structure f: Rn \rightarrow Rm, where X is a reduced arrangement of plausible calculation space choices. Rn, and Y is the doable arrangement of model vectors in Rm, to such an extent that $Y=\{y \in \text{Rm} : y=f(x), x \in X\}$.

We expect that the favored headings of standards esteems are known. A point " \in Rm is liked to (carefully overwhelm) another point $y' \in$ Rm, composed as y'' > y'. The Pareto wilderness is in this way composed as:

$$P(Y) = \{y' \in Y : \{ y'' \in Y : y'' > y', y' \neq y''\} = \emptyset \}.$$

2- Objectives:

The current examination was completed with the accompanying destinations:

To explore for multi-populace improvement issue with related examination. -4

ii. To propose and approve another strategy MPOPCS for settle multi-populace upgrade issue and afterward use the proposed way to deal with accomplish the target.

iii. To apply the proposed technique in reality issue (test issue).

This examination applied to information distributed in the exploration [16] so we can contrast and it. In view of the issues found in the distributed exploration, we have fabricated our new strategy in one phase: first, on the various capacities lastly applied to seat mark work.

The solution of our problem has been covered through four chapters, the first three chapters are considered to provide the main concepts of this thesis, while the proposed expansion of statistical standard randomness tests is introduced in chapter four.

Area One: this section incorporates numerical Essential Ideas of multi-populace cuckoo scan calculation for taking care of worldwide improvement issue and more insights concerning it.

Segment Two: presents the connected writing is assessed, which likewise examines the audit of general transformative calculations and behaviors investigations of their single just as various destinations. In addition, the part directs an audit of the calculations properties with others.

Area: two or three the fundamental basis' important to subjectively investigate the models during this postulation is inspected. This part additionally examines the zones of use inside the field of multi-target improvement issue. We likewise present the nature-enlivened meta-heuristic methodologies and stretches out the degree to consolidate the space of multitude knowledge. At last, the outcomes accomplished and hence the connected properties are talked about.

Area Four: at long last, this section presents the ends likewise as recommendations for future work.

3- Proposed Algorithm(Complete MCS Algorithm)

1:	Randomly initialise Point Pi for n. Point;
2:	Calculate the fitness values of initial Point: f (Pi);
3:	WHILE (the termination conditions are not met)
	Select space
4:	For (each point i in the population)
5:	$P_{new} = Pbest + \alpha * rand(P_{mean} - P_i)$
6:	If $f(\text{Pnew}) < f(Pi)$
7:	$P_i = P_{naw}$
8:	If $f(\text{Pnew}) < f(\text{Phest})$
9:	$P_{\text{best}} = P_{\text{new}}$
10:	End If
11:	End If
12:	End For
	Search in space
13:	For (each point i in the population)
14:	$P_{naw} = P_i + v(i) * (P_i - P_{i+1}) + x(i) * (P_i - P_{max})$
15:	If $f(\text{Pnew}) < f(Pi)$
16:	$P_i = P_{new}$
17:	If $f(\text{Xnew}) < f(P_{\text{best}})$
18:	$P_{\text{best}} = P_{\text{new}}$
19:	End If
20:	End If
21:	End For
	Swoop
22:	For (each point i in the population)
23:	$P_{new} = rand * P_{next} + x1(i) * (P_i - c1 * P_{mean}) + y1(i) * (P_i - c2 * P_{next})$
24:	If $f(\text{Pnew}) < f(Pi)$
25:	$P_i = P_{new}$
26:	If $f(Pnew) < f(P_{best})$
27:	$P_{\text{best}} = P_{\text{new}}$
28:	End If
29:	End If
30:	End For
31:	Set $k := k + 1$;
32:	END WHILE

4- Excremental Results:

This segment assesses the presentation of the proposed MCS calculation. Initially, we portray the assessment procedure and present the aftereffects of the analyses, which are led in various advancement issues. In comparison, we look at the presentation of the estimation of the MCS with that of other numerical procedures. Thirdly, we discuss in depth our discoveries. The theorem of no free lunch (NFL) indicates that 'with any measurement, more than one class of problems is ultimately compensated for in execution over another class for any elevated exhibition'[28] A particular meta-heuristic may deliver promising results for a bunch of problems, but may work inadequately on another problem structure. This area of research is highly complex with the NFL. The remaining methodologies are consequently enhanced, although new meta-heuristics are proposed each year.

4.1 Settings for Experiments and Quantitative Approaches:

First and primarily, on 30 benchmark elements of the CEC2014 Rivalry on Single Goal, we test the presentation of the proposed MCSGenuine Boundary Mathematical Enhancement [29], in light of the fact that those benchmark testing issues are most recurrence utilized by different analysts to test their solid focuses that covers the different kinds of capacity improvement a solitary target issues as a rule as demonstrated in Tables 1 and 2. Nitty gritty meanings of the capacities can be found in [30].

Similarly, the display of the MCS measurement is tested using the CEC 2014 benchmark capacity[28]. The CEC 2014 benchmark capabilities arrangement consists of 30 suits divided into four groups, namely unimodal, clear multimodal, combination and structure capabilities. The investigation range and worldwide ideal estimates of all benchmark capacities are listed in Table 2 by MCS.

We contrast MCS and six ongoing well-known meta-heuristic techniques on the test capacities:

Differential evolution (DE) algorithm a major difference in the estimation of the DE works by getting a population of applicant agreements (called specialists). Using simple numerical recipes, these specialists are transferred into the pursuit room to enter the positions of established specialists in the population. If the current expert position is an upgrade, the position is recognised at that level and is necessary for the society, the new position is effectively disposed of in any situation. The interaction is rehashed and, in doing as such, it is trusted, however not ensured, that a palatable arrangement will be found [31].

•GWO algorithm: The GWO calculation imitates the order of administration and chasing system of dark posers as proposed by [32]. To reconstruct the administration chain of value, four kinds of dark wolf, to be precise, alpha, beta, delta and omega, are used. Even, to be precise, quest, violation and attack of prey, three simple phases of chasing are carried out to play out an enhancement.

•**EPSOA** The hybridization of some PSO calculations, called EPSO[33], proposes a series of enhancement calculations for molecule swarms with a self-versatile portion.

• FDR-PSO In order to resolve the problem of untimely assembly saws in PSOs, this estimate has been proposed. FDR-PSO introduced a social learning section in correlation with PSO, taking exercises from the adjoining molecule's (nMCS) analyse. The adjoining particles are

chosen based on two standards: (1) the molecule should be close to the molecule being refreshed and (2) the molecule should be better adjusted contrasted and the molecule being refreshed. Regardless of whether an adjoining molecule meets these rules, the preference is provided by the one-dimensional length fitness ratio, called the length proportion [34].

•CLPSO in PSO, The pMCS and gMCS particles modify the trajectory towards the global ideal. Provided that gMCS is the population's MCS experience, this molecule may be a lower ideal in the vicinity for a multimodal dilemma and a long way from the ideal in the world. CLPSO was proposed in [35] to take care of this issue. The MCS exams of all particles are used in CLPSO to handle the search for a molecule.Very clearly, changing the control limits for each problem will maximize the estimation presentation. Nonetheless, it can take quite a while to find different boundary settings for any query. For any measurement, such tuning periods will prompt an unjustifiable association in determining the general display of the calculation over the entire test suite. A proposed setting of the measurement zones as seen in Table 3.

In experiments, we use 30-D problems for test problems and set the highest number of evaluations (NFE) at 100,000 for each challenging calculation. to guarantee a reasonable correlation. Every calculation has been run multiple times (with various starting irregular qualities) on each test issue and the assessment depends on the normal execution more than 60 runs.

Table 2 CEC 2014 test functions

Benchmark functions	Search range	$F(x^*)$
Unimodal functions	[- 100, 100] ^D	- 310
F1: Rotated high conditioned elliptic function	[- 100, 100] ^D	100
F2: Rotated Bent Cigar function	$[-100, 100]^D$	200
F3: Rotated discus function	[- 100, 100] ^D	300
Simple multimodal functions		
F4: Shifted and rotated Rosenbrock's function	[- 100, 100] ^D	400
F5: Shifted and rotated Ackley's function	[- 100, 100] ^D	500
F6: Shifted and rotated Weierstrass function	[- 100, 100] ^D	600
F7: Shifted and rotated Griewank's function	[- 100, 100] ^D	700
F8: Shifted Rastrigin's function	$[-100, 100]^D$	800
F9: Shifted and rotated Rastrigin's function	[- 100, 100] ^D	900
F10: Shifted Schwefel's function	$[-100, 100]^D$	1000
F11: Shifted and rotated Schwefel's function	$[-100, 100]^D$	1100
F12: Shifted and rotated Katsuura function	$[-100, 100]^D$	1200
F13: Shifted and rotated HappyCat function	[- 100, 100] ^D	1300
F14: Shifted and rotated HGBat function	$[-100, 100]^D$	1400
F15: Shifted and rotated expanded Griewank's plus Rosenbrock's function	$[-100, 100]^D$	1500
F16: Shifted and rotated expanded Scaffer's F6 function	[- 100, 100] ^D	1600
Hybrid functions		
F17: Hybrid function 1 ($N = 3$)	[- 100, 100] ^D	1700
F18: Hybrid function 2 ($N = 3$)	[- 100, 100] ^D	1800
F19: Hybrid function 3 $(N = 4)$	[- 100, 100] ^D	1900
F20: Hybrid function 4 $(N = 4)$	[- 100, 100] ^D	2000
F21: Hybrid function 5 ($N = 5$)	[- 100, 100] ^D	2100
F22: Hybrid function 6 $(N = 5)$	[- 100, 100] ^D	2200
Composition functions		
F23: Composition function 1 ($N = 5$)	[- 100, 100] ^D	2300
F24: Composition function 2 ($N = 3$)	[- 100, 100] ^D	2400
F25: Composition function 3 ($N = 3$)	[- 100, 100] ^D	2500
F26: Composition function 4 ($N = 5$)	[- 100, 100] ^D	2600
F27: Composition function 5 ($N = 5$)	[- 100, 100] ^D	2700
F28: Composition function 6 ($N = 5$)	$[-100, 100]^D$	2800
F29: Composition function 7 ($N = 3$)	$[-100, 100]^D$	2900
F30: Composition function 8 ($N = 3$)	[- 100, 100] ^D	3000

4.2 Procedure for Analysis:

Centred on the mean, standard deviation (SD), MCS point and Wilcoxon marked location test measurements of the ability figures, the test results will be shown.

(a) Mean (x) shall be processed as the number of the multitude of noticed results from the example isolated by the all-out number of these results.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

(b) SD is a measure that evaluates the variety or scattering of a bunch of information for the capacity esteems.

$$SD = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$

(c) MCS point the MCS point mirrors the base worth.

(d) Wilcoxon marked position test The Wilcoxon marked position test measurement decides the distinction between two examples [36] and gives an elective trial of area that is influenced by the sizes and indications of these distinctions. This test answers the accompanying theories:

H0: mean (A) - mean (B) H1: mean (A) - mean (B),

Where the results of the first and second equations are signified by A and B, respectively. Additionally, this measure tests whether one estimate beats the other. Let di mean the difference in taking care of ith out of n problems between the presentation scores of two calculations. Enable R+ to mean the number of positions for the problems in which the second is beaten by the key calculation. Ultimately, let R- address the amount of positions for the problems with which the following estimate defeats the first. The positions of several 0 are evenly split between the entireties. On the off chance that these totals have an odd number, at that point one of them is ignored.

$$R^{+} = \sum_{d_{i}>0} rank(d_{i}) + \frac{1}{2} \sum_{d_{i}=0} rank(d_{i})$$
$$R^{-} = \sum_{d_{i}<0} rank(d_{i}) + \frac{1}{2} \sum_{d_{i}=0} rank(d_{i})$$

In order to contrast the equations at an immense degree of alpha = 0.05, we use MATLAB to find p esteem. Where the p-esteem is not precisely the essential stage, the invalid hypothesis is denied. R+ addresses a high mean estimate that illustrates predominance over multiple

calculations through diverse test arrangements. Across all experiments, this algorithm beats all algorithms. While $\binom{R^+ = \frac{n \times (n+1)}{2}}{2}$ this algorithm outperforms all algorithms across all Exploration.

problems	Statistics	MCS	DE/MCS/1	DE/rand/1	WOA	GWO	EPSO	CLSO	FDR-
	M	0.545.10	20.04215	0.001555	1004 000	1 (10.00	0.575.00	0456 677	PSO 1 SOF
F 1	Mean	2.54E-13	30.04215	0.001557	1904.233	1619.29	3.57E-03	8456.677	1.59E+00
FI	STD	9.64E-14	114.3291	0.000639	/85.168	1061.882	5.97E-03	2653.327	8.08E-01
	MCS	1.14E-13	5.68E-14	0.000412	484.9183	207.1187	0.000333	3314.996	3.49E-01
	Mean	3.58E-04	1304.298	35520.12	91628.65	13918.57	3062.083	48987.67	5976.6
F2	STD	5.58E-04	1336.021	6697.749	27183.65	3716.508	1143.627	9091.653	2046.091
	MCS	1.78E-06	243.5314	24076.23	49073.45	7579.364	1512.356	33066.63	2280.343
	Mean	424534.6	13258785	2.28E+08	1.37E+08	29447491	8035917	2.38E+08	17931228
F3	STD	177530.9	6956047	47226682	61888142	15421433	3242596	86784215	6780924
	MCS	179757.8	5738012	1.43E+08	41101249	7104698	2122823	97026471	7599379
	Mean	1.18E+03	8.20E+03	49747.03	189673.2	20851.57	16095.22	57566.8	13210.99
F4	STD	9.03E+02	5.10E+03	9485.325	68961.54	4757.41	5503.273	13882.48	3154.892
	MCS	136.9326	1505.053	25632.61	92524.57	8712.111	8160.798	31702.48	6741.11
	Mean	3808.727	4.26E+03	4.77E+03	21435.43	6067.666	6531.804	19950.64	4498.863
F5	STD	751.3042	1.35E+03	1.41E+03	5128.932	2627.344	1490.606	1951.32	1018.822
	MCS	2.75E+03	1598.197	1.31E+03	12328.39	1538.454	4011.876	15642.48	3343.646
	Mean	14.59163	16683589	515.4254	1.58E+08	49760768	764.0062	1.67E+09	4939.805
F6	STD	11.77044	53306445	397.5199	1.71E+08	92454010	1141.437	6.86E+08	4982.12
	MCS	0.102552	7.664112	58.39584	23999789	230910.7	57.12508	5.69E+08	315.4345
	Mean	0.01779	2.484019	1.093496	60.75442	114.1146	1.10798	637.9848	1.190527
F7	STD	0.020298	7.603139	0.054107	20.7602	83.74462	0.148083	121.9135	0.188011
	MCS	2.84E-13	0.00838	1.034927	23.40269	8.415945	0.656189	395.6984	1.030021
	Mean	21.01276	21.05521	21.04873	20.92379	21.06576	21.08927	21.10556	21.02348
F8	STD	0.050082	0.058582	0.076623	0.088607	0.038447	0.060285	0.045758	0.059419
	MCS	20.8578	20.92556	20.83246	20.72009	20.99647	20.88136	21.00448	20.91516
	Mean	96.36371	54.28236	141.0055	272.3845	104.8878	66.74963	185.4411	69.79172
F9	STD	27.40986	14.06197	9.380712	41.96294	24.73606	15.14341	16.58373	23.11518
	MCS	48.75287	34.14963	119.3419	155.4923	55.97502	21.44116	140.0474	35.54721

Table (3) Comparative study of MCS algorithms' experimental observations for 30Dimensional CEC2014 test functions.

I abic J (commucu)	Table .	3 (con	tinued)
--------------------	---------	--------	---------

problems	Statistics	MCS	DE/MCS/1	DE/rand/1	WOA	GWO	EPSO	CLSO	FDR-PSO
	Mean	125.0188	223.6509	227.3427	487.0419	180.078	94.93207	362.0407	172.7515
F10	STD	45.55562	30.74557	11.93888	82.07469	62.57511	36.32295	22.08793	49.2869
	MCS	49.74789	129.7594	200.8293	339.6203	78.26293	53.89494	306.642	86.34158
	Mean	26.72306	31.22171	42.42874	38.85759	19.45602	27.36569	36.93599	22.55814
F11	STD	5.551898	10.05158	1.104764	2.85686	2.871001	3.75895	1.831779	4.178208
	MCS	17.85074	11.86539	39.76568	30.62355	15.20534	19.26707	32.77143	13.65139
	Mean	6920.658	33813.73	361261	305450.9	88617.99	25464.79	452552.4	36160.32
F12	STD	9400.036	28571.61	62591.25	107973.4	38089.88	13721.59	84126.72	17501.06
	MCS	2.71E+02	4746.136	234494.5	129284.8	32123.28	9063.297	263658.2	9404.816
	Mean	8.487249	11.92546	17.43139	27.87135	7.166694	7.726158	32.99436	14.84338
F13	STD	3.658165	3.374358	1.007515	7.299842	2.802968	3.215878	3.983259	2.542399
	MCS	3.11751	3.432903	15.624	15.36812	4.44821	4.25801	24.89331	8.778688
	Mean	12.71934	13.53093	13.81469	13.6533	12.67162	13.21311	13.68121	13.14486
F14	STD	0.225599	0.230809	0.136006	0.288224	0.531075	0.314512	0.152146	0.342664
	MCS	12.21889	12.99864	13.44302	12.70778	11.5179	12.46994	13.3699	12.45767
	Mean	424.7033	390.9729	315.3441	783.9179	484.9082	346.7444	702.3434	394.7499
F15	STD	92.4719	103.5547	85.81975	185.1549	88.37767	105.5986	60.39995	159.2829
	MCS	180.8602	137.6303	203.7066	498.8547	357.4855	126.0998	596.7025	172.8625
	Mean	349.8725	311.8774	280.1378	554.3427	294.8007	245.7533	536.9206	267.6681
F16	STD	147.3519	102.7791	47.45666	92.59598	166.0575	168.4909	46.23015	163.6782
	MCS	122.6517	160.1561	228.3058	410.798	119.1686	82.59358	411.0915	57.17688
	Mean	261.1338	349.543	323.9705	665.682	376.8497	259.0219	586.6951	388.1169
F17	STD	159.2747	93.30077	56.84546	116.8222	158.7857	142.7435	74.82946	181.4352
	MCS	108.146	232.7708	249.8718	454.5499	122.1886	106.8439	447.2026	164.64
	Mean	934.9513	924.1293	907.0517	1114.115	956.9986	951.1687	1111.869	903.0941
F18	STD	36.28793	17.59137	0.854958	80.0777	22.89824	21.96692	28.90185	47.22523
	MCS	800	907.922	905.9079	954.0695	915.7854	918.8487	1063.307	800.0262

 Table 3 (continued)

problem	Statistic	MCS	DE/MCS/	DE/rand/	WOA	GWO	EPSO	CLSO	FDR-
- S	S		1	1					PSO
	Mean	935.181				957.700	940.279	1107.02	930.886
		7	918.347	907.2287	1128.274	5	3	5	4
F19	STD	50.6556				17.8363	32.3981	26.5169	11.5962
		1	11.40584	0.755932	104.2659	7	3	9	5
	MCS					920.690	800.008		912.528
		800	907.9179	906.499	963.3362	6	5	1058	5
	Mean	945.958				951.026	932.552	1103.51	
		6	916.9416	907.0598	1100.812	7	7	4	921.248
F20	STD	25.7171				22.6130	39.7958		24.4625
		7	7.503387	0.539631	106.2042	6	4	31.6637	8
	MCS					918.881	800.011	1025.03	800.044
		900	906.0478	905.9592	938.4201	3	4	4	4
	Mean	731.442				908.282		1228.00	646.871
		1	618.5815	500.0009	1309.397	4	816.667	1	1
F21	STD					216.656		26.1943	273.970
		333.38	233.3088	0.000959	41.04932	7	344.443	5	3
	MCS					505.143	500.000	1149.81	500.040
		500	500	500.0003	1234.676	8	1	6	6
	Mean	998.650				1009.38		1268.65	1015.34
		6	957.0858	926.9182	1271.029	1	1054.05	8	4
F22	STD	38.4383				53.8853		49.6597	
		1	39.59547	16.7434	110.9841	8	40.4425	6	29.3925
	MCS	938.224				919.586	953.357	1183.69	961.977
		6	895.7831	888.3293	1077.641	7	5	1	9
	Mean	839.579				934.424	711.610	1227.43	624.345
		2	874.9123	534.1654	1317.698	5	3	3	4
F23	STD	291.288					266.384	22.3327	187.028
		9	176.9421	0.000582	36.653	182.645	6	7	7

	MCS	537.292				572.319	534.175	1161.97	534.164
		2	602.8678	534.1643	1234.633	9	3	1	3
	Mean	345.934				774.589	326.378	1298.38	271.475
N F24 N F24 N F25 N F25 N F26 N F26 N F27 N F28 S N N F28 N		6	668.644	876.4201	1384.216	6	4	7	4
	STD	378.471				344.730	337.940	27.9460	
		7	349.8999	235.7744	76.164	7	3	9	270.15
	MCS					203.173	200.000	1214.36	200.066
		200	200	200.0049	1038.321	3	5	8	5
	Mean					853.131	271.207	1304.86	271.862
		339.939	592.8892	941.6735	1380.574	8	2	3	7
F25	STD	363.073				315.144	270.919	33.9155	271.379
		8	332.4363	140.218	79.13488	4	8	7	6
	MCS						200.000	1245.32	200.066
		200	200	200.0153	1010.868	298.119	6	4	1
	Mean	731.442	618.5815	500.0009	1309.397	908.282	816.667	1228.00	646.871
		1				4		1	1
F26	STD	333.38	233.3088	0.000959	41.04932	216.656	344.443	26.1943	273.970
						7		5	3
	MCS	500	500	500.0003	1234.676	505.143	500.000	1149.81	500.040
						8	1	6	6
	Mean	998.650	957.0858	926.9182	1271.029	1009.38	1054.05	1268.65	1015.34
		6				1		8	4
F27	STD	38.4383	39.59547	16.7434	110.9841	53.8853	40.4425	49.6597	29.3925
		1	005 5001		1055 (11	8	0.50.055	6	0.61.055
	MCS	938.224	895.7831	888.3293	1077.641	919.586	953.357	1183.69	961.977
	74	6	074 0102	5041654	1017 (00	7	5	1227.42	9
	Mean	839.579	874.9123	534.1654	1317.698	934.424	/11.610	1227.43	624.345
F2 0	CTD	2	1760401	0.000502	26.652	5	3	3	4
F28	51D	291.288	176.9421	0.000582	36.653	182.645	266.384	22.3327	187.028
	MCC	527.202	(0) 9(79	524 1642	1024 (22	572 210	0	/	524164
	MCS	557.292	602.8678	554.1643	1254.633	572.319	534.175	1101.97	534.164
	N#	245.024		976 4201	1204 016	774 590	3	1209.29	3
	Nean	345.934	668.644	8/6.4201	1384.216	//4.589	326.378	1298.38	2/1.4/5

		6				6	4	7	4
F29	STD	378.471 7	349.8999	235.7744	76.164	344.730 7	337.940 3	27.9460 9	270.15
	MCS	200	200	200.0049	1038.321	203.173 3	200.000 5	1214.36 8	200.066 5
	Mean	339.939	592.8892	941.6735	1380.574	853.131 8	271.207 2	1304.86 3	271.862 7
F30	STD	363.073 8	332.4363	140.218	79.13488	315.144 4	270.919 8	33.9155 7	271.379 6
	MCS	200	200	200.0153	1010.868	298.119	200.000 6	1245.32 4	200.066 1

		Tabl	e 4:Evalua	ting the algo	rithm that off	ers the MO	CS solution	n practically	for each be	enchmark	king		
						questio	n						
Problem		DE/M	ICS/1 vs.			WOA vs.							
		N	ACS			M	CS		MCS				
	P-value	R +	R-	Winner	P-value	R +	R-	Winner	Р-	R +	R-	Winner	
									value				
F1								+	1.73E-			+	
	0.015994	187	278	-	1.71E-06	465	0		06	465	0		
F2				+				+	1.72E-			+	
	1.73E-06	465	0		1.73E-06	465	0		06	465	0		
F3				+				+	1.71E-			+	
	1.73E-06	465	0		1.70E-06	465	0		06	465	0		
F4				+				+	1.74E-			+	
	2.13E-06	464	1		1.74E-06	465	0		06	465	0		
F5				+				+	1.75E-			+	
	1.99E-01	387	78		1.83E-03	420	45		06	465	0		
F6				+				+	1.76E-			+	
	6.89E-05	437	28		1.73E-06	465	0		06	465	0		
F7				+				+	1.77E-			+	
	2.84E-05	450	15		1.73E-06	465	0		06	465	0		
F8				+				+	9.70E-				
	0.00873	437	28		0.004682	450	15		05	114	351	-	
F9								+	1.79E-			+	
	3.52E-06	87	378	-	5.22E-06	464	1		06	465	0		
F10				+				+	1.78E-			+	
	2.60E-06	464	1		2.60E-06	464	1		06	465	0		
F11				+				+	1.72E-			+	
	0.057096	399	66		1.73E-06	465	0		06	465	0		
F12				+				+	1.71E-			+	
	3.41E-05	455	10		1.73E-06	465	0		06	465	0		

MULTI - POPULATION	CUCKOO	SEARCH	ALGORITHM	FOR	SOLVING	GLOBAL	PROBLEMS	OF OPTIMIZAT	TION
PJAEE, 18(7) (2021)									

F13				+				+	1.75E-			+
	0.001593	429	36		1.73E-06	465	0		06	465	0	
F14				+				+	1.71E-			+
	1.73E-06	465	0		1.73E-06	465	0		06	465	0	
F15				+					2.30E-			+
-	0.110926	255	210		5.79E-05	189	276	-	06	464	1	
F16	0.010.401	245	100	+	0.001007	010	150	+	6.34E-	450	<i>.</i>	+
F17	0.318491	345	120		0.021827	312	153		06	459	6	
F1/	0.00972	127	20	+	0.029496	200	66	+	1./0E-	165	0	+
E19	0.00875	437	28		0.028480	399	00		00 1 72E	405	0	I
110	0.042767	212	253		6 89F-05	140	325		1.73E- 06	465	0	Ŧ
F19	0.042707	212	233	-	0.072-05	140	525	-	1 92F-	405	0	+
117	0.007271	165	300	_	0.002957	114	351	-	06	464	1	I
F20	0.007271	100	200		0.002/07		001		2.60E-	101	1	+
	7.69E-06	87	378	-	2.35E-06	59	406	-	06	462	3	
F21									1.70E-			+
	0.181456	284.5	180.5	+	0.643517	410	55	+	06	465	0	
F22									1.71E-			+
	0.001382	140	325	-	2.88E-06	59	406	-	06	465	0	
F23				+					1.73E-			+
	0.571646	360	105		1.73E-06	0	465	-	06	465	0	
F24	0.000	4.50		+			10	+	1.73E-		0	+
FA <i>i</i>	0.002415	450	15		1.64E-05	455	10		06	465	0	
F25	0.005729	120 5	25.5	+		155	10	+	1.73E-	165	0	+
E26	0.005728	439.5	25.5	I	6.98E-06	455	10			465	0	
F20	6.32E-05	450	15	+	3.88E-06	462	3	+	1.92E-06	464	l	-
F27	0.065641	399	66	+	0.000771	87	378	-	0.002255	455	10	-
F28	0.171376	294	171	+	5.79E-05	87	378	-	0.011748	420	45	+
F29	0.019566	437	28	+	0.002584	459	6	+	0.002255	459	6	+
F30	0.338856	360	105	+	4.29E-06	59	406	-	1.73E-06	465	0	-
+/=/-				28/0/6				23/0/9				26/0/3

Table 4 ((continued)											
Problem		GW M	/O vs. ICS			EPS M	O vs. CS			CLPS MC	O vs. CS	
	P-value	R+	R-	Winner	P-value	R+	R-	Winner	P-value	R+	R-	Winner
F1	1.73E-06	465	0	+	1.72E-06	465	0	+	1.73E- 06	465	0	+
F2			0	+			0	+	1.72E-		0	+
F3	1.73E-06	465	0	+	1.71E-06	465	0	+	06 1.75E-	465	0	+
F4	1.73E-06	465	0	+	1.73E-06	465	0	+	06 1.76E-	465	0	+
F5	1.73E-06	465	0	±	1.76E-06	465	0	±	06 1 79E	465	0	Ŧ
	6.64E-04	437	28	Т	2.35E-06	462	3	Т	06	465	0	Т
F6	1.73E-06	465	0	+	1.73E-06	465	0	+	1.76E- 06	465	0	+
F7	1 73E-06	465	0	+	1 77E-06	465	0	+	1.74E- 06	465	0	+
F8	3.88E-04	437	28	+	7.69E-06	462	3	+	6.98E-	459	6	+
F9	0.130592	420	45	+	9.71E-05	140	325	-	1.73E-	465	0	+
F10									1.73E-			+
F11	0.001036	429	36	+	0.002415	165	300	- +	06 2.13E-	465	0	+
F10	8.47E-06	114	351	-	0.585712	360	105		06	464	1	
F12	1.73E-06	465	0	+	3.11E-05	459	6	+	1.73E- 06	465	0	+
F13	0.03001	255	210	+	0.318491	312	153	+	1.73E- 06	465	0	+

MULTI - POPULATION	CUCKOO	SEARCH	ALGORITHM	FOR	SOLVING	GLOBAL	PROBLEMS	OF OPTIMIZAT	TON
PJAEE, 18(7) (2021)									

F14				+				+	1.73E-			+
	0.861213	360	105		6.34E-06	462	3		06	465	0	
F15				+				+	1.73E-			+
	0.017518	420	45		0.013194	255	210		06	465	0	
F16				+				+	6.34E-			+
	0.171376	255	210		0.033269	312	153		06	462	3	
F17				+				+	1.92E-			+
	0.005667	429	36		0.942611	374	91		06	464	1	
F18				+				+	1.73E-			+
	0.000453	450	15		0.062683	399	66		06	465	0	
F19				+				+	1.73E-			+
	0.028486	410	55		0.861213	329	136		06	465	0	
F20				+				+	1.73E-			+
	0.318491	387	78		0.271155	312	153		06	465	0	
F21				+				+	5.22E-			+
	0.038723	410	55		0.110926	437	28		06	459	6	
F22				+				+	1.73E-			+
	0.318491	374	91		7.51E-05	444	21		06	465	0	
F23				+				+	2.35E-			+
	0.152861	374	91		0.049498	234	231		06	464	1	
F24				+				+	2.60E-			+
	0.000148	455	10		0.012453	455	10		06	462	3	
F25				+				+	1.92E-			+
	2.60E-05	459	6		0.010444	455	10		06	464	1	
F26	0.017.170			+			100			4.50		
525	0.015658	410	55		0.158855	275	190	+	7.69E-06	459	6	+
F27	0.765519	360	105	+	6.89E-05	140	325	-	6.32E-05	189	276	-
F78												
120	0.042767	234	231	+	8.19E-05	114	351	-	4.07E-05	87	378	-
F29				+								
	0.000261	462	3		0.338843	329	136	+	0.021827	255	210	+
F30	0.006926	420	15	+	0.050926	075	100		0.000616	224	021	
	0.000830	420	43		0.039830	213	190	+	0.000010	234	231	+

+/=/-

29/0/1

28/0/2

26/0/4

Table 4 (co	ontinued)			
Problem		FDR-PS	O vs. MCS	
	P-value	R +	R-	Winner
F1	1.73E-06	465	0	+
F2	1.72E-06	465	0	+
F3	1.75E-06	465	0	+
F4	1.76E-06	465	0	+
F5	1.57E-02	399	66	+
F6	1.78E-06	465	0	+
F7	1.72E-06	465	0	+
F8	0.557743	374	91	+
F9	0.000529	165	300	-
F10	0.000571	437	28	+
F11	0.002765	212	253	-
F12	1.49E-05	462	3	+
F13	3.88E-06	459	6	+
F14	2.35E-06	462	3	+
F15	0.033269	255	210	+
F16	0.097772	312	153	+
F17	0.007271	437	28	+
F18	0.000716	165	300	-
F19	0.042767	255	210	+
F20	2.60E-05	87	378	-
F21	0.585712	429	36	+
F22	0.036826	387	78	+
F23	0.000453	87	378	-
F24	0.014795	455	10	+
F25	0.010444	455	10	+

1109

F26	0.008217	255	210	+
F27	0.093676	234	231	+
F28	0.125438	294	171	+
F29	0.049498	410	55	+
F30	0.000148	455	10	+
+/=/-				25/0/5

4.3 Results and discussion:

4.2.1 CEC 2014 benchmark functions:

The consequences of the unimodal capabilities as seen in Table 3. MCS acquires the MCS to bring in these strengths and even contrast vital outcomes and numerous estimates. Remarkably, however, different equations, such as GWO, perform admirably with unimodal (Mirjalili et al. 2014), have lost their show of these capacities. In addressing these opposing capacities and various equations, MCS may be feasible.

Table 4 shows the consequences of the 13 multimodal capacities. MCS acquires the MCS brings about four capacities (f4, f13, f14 and f16). Furthermore, EPSO gets the MCS brings about four capacities (f5, f9, f11 and f12), CLPSO acquires the MCS brings about two capacity (f8 and f10), FDR-PSO gets the MCS brings about two capacities (f6 and f15) and DE/rand/1 gets the MCS result in f7. The aftereffects of MCS were poor in these capacities. The explanation is that the quantity of localisation regions is very huge, which makes moving toward worldwide streamlining troublesome contrasted and different capacities. Table 4 shows the aftereffects of the six half and half capacities. MCS acquires the MCS bring about five capacities (for example f17, f18, f20, f21 and f22).

The factual checks indicate that, in comparison to the next five equations, MCS execution is essentially special. Note that in this gathering of half and half capacities, the factors are arbitrarily isolated into sub-parts, while the distinctive fundamental capacities are utilized for various sub-segments, along these lines bringing about a huge decrease in the presentation of calculations (for example GWO and DE) yet The description of MCS remains as important as the important highlights. The aftereffects of the eight structural abilities as seen in Table 4. MCS gets the first position in quite a while (for example f23, f24, f25, f26, f29 and f30). With those of the sub-capacities, namely f9, f6 and f11, the relatively low MCS exhibition in f27 and f28 is somewhat predictable provided that compositional capacities have different neighbourhood optima's.

Variables are haphazardly isolated into sub-segments, while the distinctive fundamental capacities are utilized for various sub-segments, accordingly bringing about a huge decrease in the presentation of calculations However, the MCS exhibition remains as serious as the critical highlights (for example, GWO and DE). The aftereffects of the eight development capabilities are seen in Table 4. In quite a time, MCS gets the first place (for example f23, f24, f25, f26, f29 and f30). Provided that compositional capacities have different neighbourhood optima, the usually low appearance of MCS in f27 and f28 is part of the way steady with those of sub capacities, namely f9, f6 and f11.

In summary, the general MCS show is the MCS of the six relative measurements of the benchmark suite, plus the one CEC2014 sessions. The appearance of MCS is not palatable on certain test capacities with multiple neighbourhood optima.

Remarkably, MCS execution isn't impressively serious contrasted and the highest level calculations in the CEC 2014 rivalries. Most of these calculations utilize complex hunt instruments, for example, mixing administrators, history memory, substitution procedures and too heuristic regulators, the same as calibrating the test suite configurations. Nonetheless, our task is only to measure the show of MCS on a test suite by using simple systems and limits. We assume that by presenting more volatile elements and consolidating ground-breaking managers with diverse heuristics, MCS can also essentially enhance its presentation. Figures (4 - 10) show

the general exhibition of MCS contrasted and different calculations. Appropriately, we can notice the prevalence of MCS among the six calculations.

Figure (4)

Figure (5)

Figure (6)

Figure (7)

Figure (8)

Figure (9)

Figure (10)

4.4 Conclusions:

This examination proposed a novel improvement calculation that emulates the chasing methodologyThe findings of the change and the discussion indicate that the MCS estimate is the MCS candidate in two meetings of the CEC 2005 and CEC 2014 among the six related benchmark suite calculations. GWO, DE/MCS/1, DE/rand/1, EPSO, FDR-PSO and CLPSO are integrated into these equations. The presentation of MCS is not palatable in light of the fact that we used a specifically decreased MCS population size in our tests on certain test capacities of different nearby optima. The number of arrangements was limited to a solitary digit in later cycles. Subsequently, it was alarming to break further from neighbouring values. In addition, we attempted the use of MCS. The moderately large population size set in MCS will greatly enhance the presentation of this research work, but various other test capabilities are lost. By and large, procedures to diminish populace size help improve the general presentation of MCS, yet a powerful calculation for specific issues. In any case, we should look at these two methodologies and pick the MCS technique for most of the genuine advancement issues. Among the other five examination calculations, MCS indicated the MCS execution all through the suite. Be that as it may, taking all things together test works, all calculations are not reliably better contrasted and the others. Indeed, every calculation accomplishes the MCS result on certain capacities. MCS positions first in quite a while. DE/MCS/1, DE/rand/1, GWO, EPSO, CLPSO and FDR-PSO rapidly complete 2, 7, 1, 6, 2 and 4 capacities, separately. The advantageous conditions and inconveniences of its benchmark suite are seen in each estimate, which we consider to be the equivalent of various actual problems.

References:

[1] S. Mirjalili, S. Saremi, S.M. Mirjalili, L.d. S. Coelho, Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization, Expert Syst.Appl. 47 (2016) 106–119, doi: 10.1016/j.eswa.2015.10.039.

[2] P. A. N. Bosman and D. Thierens. (2003). The balance between proximity and diversity in multi-objective evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 7(2) :{ 174,188}.

[3] M. Laumanns, E. Zitzler, and L. Thiele. (2001).On the effects of archiving, elitism, and density based selection in evolutionary multi-objective optimization. In Evolutionary Multi-Criterion Optimization (EMO), pages 181-196.

[4] R. C. Purshouse and P. J. Fleming. (2007) .On the evolutionary optimization of many connecting objectives. IEEE Transactions on Evolutionary Computation, 11(6) :{ 770,784}.

[5] M. Garza-Fabre, G. Toscano-Pulido, C. A. C. Coello, and E. Rodriguez-Tello. Elective ranking + speciation "Many-objective optimization". In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pages {2115, 2122}2011.

[6] S. F. Adra and P. J. Fleming. (2011). Diversity management in evolutionary many objective optimization. IEEE Transactions on Evolutionary Computation, 15(2) :{ 183,195}.

[7] C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the Surprising Behavior of Distance Metrics in High Dimensional Space. Springer, 2001.

[8] D. W. Corne and J. D. Knowles. (2007) .Techniques for highly multi-objective optimization: some non-dominated points are better than others. In Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (GECCO), pages {773,780}.

[9] T. Wagner, N. Beume, and B. Naujoks. (2007). Pareto-, aggregation-, and indicator based methods in many-objective optimization. In Evolutionary Multi-Criterion Optimization (EMO), pages {742-756}.

[10] H. Ishibuchi, N. Tsukamoto, and Y. Nojima. (2008). Evolutionary many-objective optimization: A short review. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pages {2419, 2426}.

[11] Prakash, R., Lokeshgupta, B., & Sivasubramani, S. (2018, December). Multi-objective bat algorithm for optimal placement and sizing of DG. In 2018 20th National Power Systems Conference (NPSC) (pp. 1-6). IEEE.

[12] Wang, G. G., Gandomi, A. H., Zhao, X., & Chu, H. C. E. (2016). Hybridizing harmony search algorithm with cuckoo search for global numerical optimization. Soft Computing, 20(1), 273-285.

[13] Li, X., & Yin, M. (2015). Modified cuckoo search algorithm with self adaptive parameter method. Information Sciences, 298, 80-97.

[14] Ouaarab, A., Ahiod, B., & Yang, X. S. (2014). Discrete cuckoo search algorithm for the travelling salesman problem. Neural Computing and Applications, 24(7-8), 1659-1669.

[15] Costa, N. R., & Lourenço, J. A., "Exploring Pareto Frontiers in the Response Surface Methodology", in G.-C. Yang, S.-I. Ao, & L. Gelman, eds., Transactions on Engineering Technologies: World

[16] Mech. Engg. Dept., Saradar Vallabhbhai National Institute of Technology, Surat-395 007

[17] Ouaarab, A., Ahiod, B., & Yang, X. S. (2014). Discrete cuckoo search algorithm for the travelling salesman problem. Neural Computing and Applications, 24(7-8), 1659-1669

[18] Yang, X. S., & Deb, S. (2014). Cuckoo search: recent advances and applications. Neural Computing and Applications, 24(1), 169-174.

[19] Mareli, M., & Twala, B. (2018). An adaptive Cuckoo search algorithm for optimization. Applied computing and informatics, 14(2), 107-115

[20] Li, X., & Yin, M. (2015). Modified cuckoo search algorithm with self adaptive parameter method. Information Sciences, 298, 80-97.

[21] Zeynal, H., Hui, L. X., Jiazhen, Y., Eidiani, M., & Azzopardi, B. (2014, December). Improving Lagrangian Relaxation Unit Commitment with Cuckoo Search Algorithm. In 2014 IEEE International Conference on Power and Energy (PECon) (pp. 77-82). IEEE.

[22] Abd El Aziz, M., & Hassanien, A. E. (2018). Modified cuckoo search algorithm with rough sets for feature selection. Neural Computing and Applications, 29(4), 925-934.

[23] Chen, X., & Yu, K. (2019). Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters. Solar Energy, 180, 192-206.

[24] Boushaki, S. I., Kamel, N., & Bendjeghaba, O. (2018). A new quantum chaotic cuckoo search algorithm for data clustering. Expert Systems with Applications, 96, 358-372.

[25] Li, X., Wang, J., & Yin, M. (2014). Enhancing the performance of cuckoo search algorithm using orthogonal learning method. Neural Computing and Applications, 24(6), 1233-1247.

[26] Navimipour, N. J., & Milani, F. S. (2015). Task scheduling in the cloud computing based on the cuckoo search algorithm. International Journal of Modeling and Optimization, 5(1), 44.

[27] Kumar, M., & Rawat, T. K. (2015). Optimal design of FIR fractional order differentiator using cuckoo search algorithm. Expert Systems with Applications, 42(7), 3433-3449.

[28] Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolutionary Computer.1:67–82.

[29] LiangJJ, Qu BY, Suganthan PN (2013) Problem definitions and evaluation criteria for the CEC 2014 specialsession and competition on single objective real-parameter numerical optimization. ComputationalIntelligence Laboratory, Zhengzhou University, Zhengzhou China and technical report, Nanyang TechnologicalUniversity, Singapore.

[30] Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL report,2005005.

[31] Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization overcontinuous spaces. J Glob Optim 11:341–359.

[32] Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61.

[33] Lynn N, Suganthan PN (2017) Ensemble particle swarm optimizer. Appl Soft Comput 55:533–548.

[34] Peram T, Veeramachaneni K,Mohan CK (2003) Fitness-distance-ratio based particle swarm optimization. In:Proceedings of the 2003 swarm intelligence symposium, 2003. SIS '03. IEEE, pp 174–181.

[35] Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer forglobal optimization of multimodal functions. IEEE Trans Evol Comput 10:281–295.

[36] Derrac J et al (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology forcomparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18.