IMPACT OF WORKING CAPITAL MANAGEMENT ON PROFITABILITY IN THE LISTED FIRMS IN THE RETAIL SECTOR IN THE SAUDI STOCK EXCHANGE PJAEE, 18(13) (2021)

> PalArch's Journal of Archaeology of Egypt / Egyptology

IMPACT OF WORKING CAPITAL MANAGEMENT ON PROFITABILITY IN THE LISTED FIRMS IN THE RETAIL SECTOR IN THE SAUDI STOCK EXCHANGE

Yasmin Alhashiem¹, Mohamed Mahees Raheem²

^{1,2}College of Business, Effat University, Jeddah, Saudi Arabia

Yasmin Alhashiem, Mohamed Mahees Raheem. Impact Of Working Capital Management On Profitability In The Listed Firms In The Retail Sector In The Saudi Stock Exchange-- Palarch's Journal Of Archaeology Of Egypt/Egyptology 18(13), 827-841. ISSN 1567-214x

Keywords: Saudi Arabia, Stocks Exchange, Retail, Working Capital Management

ABSTRACT

Working capital management is an important issue in financial management, considering its large role on the profitability and liquidity of firms. This paper aims to explore the effects of working capital management on profitability in 14 Saudi retail companies that are listed in the Saudi Stock Exchange (Tadawul) over the period of 2011-2014. This study will employ panel data regression analysis using Pooled OLS to test the relationship between working capital components, which are the cash conversion cycle (CCC), current assets to total assets (CATAR), current assets to current liabilities ratio (CACLR), current liabilities to total assets ratio (CLTAR) and debt to total assets ratio (DTAR) and profitability measured by return on assets (ROA) and return on invested capital (ROIC). The working capital management components represent the independent variables, while the profitability variables represent the dependent variables used in the model. The results show no significant relationship between working capital management components and ROA and ROIC in all the companies and the ones who predominantly deal with services, except for companies that deal with mainly goods, where there is a significant negative relationship between CACLR and ROA.

INTRODUCTION

Working capital management has recently attracted research attention, especially after the 2008 financial crisis, whereby in the past most theoretical progress was focused on the area of long-term investment [1] Excessive investment in working capital can inflict opportunity costs and lead to a decrease in a firm's profitability, so the main goal should be focused on making sure that these companies have adequate amounts of cash flow to be able to sustain their day-to-day operations while making their short term payments [2]. Working capital management and its components has been the subject of many scholarly works with aims to understand its relationship with firms' profitability. Different authors have used different variables, environments and analysis techniques in order to investigate the importance of working capital management.

Makori and Jagongo [3] investigated the influence of working capital management on the profitability of five manufacturing and construction firms listed on the Nairobi Securities Exchange for the period 2003 to 2012. Both Pearson's correlation and OLS regression models were used in this study. Return on assets was used as a dependent variable in this study. This study found a negative relationship between profitability and the cash conversion cycle and between profitability and the average collection period. A study by Abuzayed [4] arrived at a conclusion that the cash conversion cycle positively affects profitability, namely gross operating profit. His study was conducted on a sample of 52 listed Jordanian firms from 2000 to 2008 and the data was analyzed using pooled OLS. The results implied that more profitable firms are less forced to manage their working capital; the study suggests that this positive relation might be the outcome of the market failing to panelize these firms for their ineffective working capital management. Furthermore, a study done by Al-Shubiri and Aburumman [5] found, while testing the relationship between the cash conversion cycle and financial characteristics, a significant positive relationship between the CCC and productivity index, liquidity index, debt ratio, market index, size index and dividends index. However and most importantly, the study found an insignificant relationship between the CCC and the profitability index, which is calculated as the ratio of return on assets.

The study was done on a sample of listed Jordanian companies taken from 11 industrial sectors from 2005 to 2011 using descriptive and correlation analysis. Pouraghajan and Emamgholipourarchi [6] found in their study empirical evidence on the impact of working capital management on both profitability and market evaluation of 80 companies listed in Tehran Stock Exchange from 2006 to 2010. They used linear multiple regression analysis and two-sided Pearson correlation to analyze the data and test their hypotheses. An overall significant relationship between working capital management and profitability, however they found that there is no significant relationship with the market value of these companies. Bagchi, Chakrabarti and Roy [7] investigated the effects of the components of working capital management on profitability of 10 Fast Moving Consumer Goods firms in India. Their results showed a strong negative relationship between the components of WCM and the profitability of these firms, which indicated the importance of finding an efficient balance between liabilities and assets to improve the profitability of these firms. Moreover, they found that DTA, AD, AC and AI to have a negative relationship with ROTA, while CCC, DTA and AC are negatively associated with ROI. They also concluded that there is a better explanatory power of fixed effect LSDV model than in pooled OLS model.

Little research has been done with regards of working capital management and its effect on profitability in Saudi firms. Thus, this paper aims to identify the effects of working capital management components and provide relevant recommendations for listed retail companies in Saudi Arabia, which will evidently contribute to the growth and development of these companies.

METHODOLOGY

To properly investigate the relationship between working capital management and profitability, this study uses variables in accordance with Mohamad and Saad [8] as well as Pouraghajan and Emangholipourarchi [6]. The dependent variables are the return on assets ratio (ROA) and return on invested capital (ROIC) used as measurements of profitability. The independent variables representing working capital management components used are the cash conversion cycle (CCC), current assets to total assets ratio (CATAR), current liabilities to total assets ratio (CLTAR) and total debt to total assets ratio (DTAR). This study chose ratio analysis as a measurement of performance because it provides a way of measuring the financial strengths and weaknesses of firms by using information found in these firms' financial statements.

The data collected were from all 14 retail companies listed in the Saudi Stock Exchange (Tadawul) for 4 years from 2011 to 2014, with the exception of Fitaihi holding group where the available data is from 2010 to 2013. This study chose to focus on listed retail companies because they presented reliable financial statements, unlike non-listed companies where the data might not be as reliable. To ensure further accuracy, the required annual financial data of these companies has been gathered from the site Tadawul. This secondary annual data was retrieved from the firms' balance sheets and income statements stated in Tadawul in order to get a true and comprehensive idea on working capital practices in these firms. The results were extracted using pooled OLS, random and fixed effects model, where 56 cross sections are observed over a period of 4 years in a panel data setting in order to investigate the impact of working capital management of the profitability of listed Saudi retail companies. The determinants of return of assets (ROA) and return on invested capital (ROIC) are examined for all 56 observations. Where:

X1=Cash Conversion Cycle-CCC

X2=Current Assets to Current Liabilities Ratio-CACLR

X3=Current Assets to Total Assets Ratio- CATAR

X4=Current Liabilities to Total Assets Ratio- CLTAR

X5=Debt to Total Assets Ratio- DTAR

Results And Discussion

Pooled OLS

The data was first run through pooled OLS. In the first and second regressions shown in Table 1 and 2 results show no statistical significance of any independent variable on both ROA and ROIC. In the results of testing the impact of the independent variables on ROA (Table 1), the constant C that represents the amount ROA will be when all the dependent variables are 0 is 0.13, and the probability of the coefficient is significant. Additionally, when conducting the same test on ROIC (Table 2) the results show that the Probability (F-statistic) is significant at a value of 0.000320, which indicates

that our independent variables can jointly influence our dependent variable ROIC.

Table	1:	Results	for	Pooled	Ordinary	Least	Squares	for	ROA	for	All
Compa	nie	S									

Variables	Coefficient	Std. Error	t-Statistic	Prob.
С	0.138999	0.059099	2.351971	0.0227
X1	-0.000122	6.51E-05	-1.877740	0.0663
X2	-0.008452	0.011213	-0.753784	0.4545
X3	0.021864	0.086914	0.251557	0.8024
X4	0.034509	0.139877	0.246711	0.8061
X5	-0.032381	0.125486	-0.258045	0.7974
R-Squared	0.191723	Mean Dependent Var.		0.116889
Adjusted R-	0.110895	S.D. Dependent Var.		0.067913
Squared				
S.E. of	0.064037	Akaike Info Criterion		-2.557749
Regression				
Sum	0.205038	Schwarz Criterion		-2.340747
Squared				
Residuals				
Log	77.61698	Hannan-Quinn Criterion		-2.473618
Likelihood				
F-Statistic	2.371992	Durbin-Watson Statistic		0.407096
Prob(F-	0.052330			
Statistic)				

Table 2: Results for Pooled Ordinary Least Squares for ROIC for AllCompanies

Variables	Coefficient	Std. Error	t-Statistic	Prob.
С	0.131667	0.100759	1.306749	0.1973
X1	-0.000125	0.000111	-1.128902	0.2643
X2	-0.008406	0.019118	-0.439718	0.6620
X3	-0.045706	0.148181	-0.308445	0.7590
X4	0.177752	0.238480	0.745354	0.4595
X5	0.169624	0.213944	0.792842	0.4316
R-Squared	0.362073	Mean Dependent Var.		0.210657
Adjusted R-	0.298281	S.D. Dependent Var.		0.130333
Squared				
S.E. of	0.109179	Akaike Info Cri	terion	-1.490705
Regression				
Sum	0.595999	Schwarz Criterion		-1.273703
Squared				
Residuals				
Log	47.73974	Hannan-Quinn Criterion		-1.406574
Likelihood				
F-Statistic	5.675780	Durbin-Watson	Statistic	0.284244
Prob(F-	0.000320			

Statistic)		

In order to get a more coherent understanding of the data and to see where there is a difference in results, this study categorized the 14 listed Saudi retail companies into two groups to be tested using the same model separately. The first group contains 9 companies in which their sales are predominantly goods and the second group contains 5 companies in which their sales are predominantly services. The results of the third regression tested the independent variables against ROA for companies that are predominantly dealing in goods.

The results showed that CACLR was significant at a 5% level, with a negative relationship between CACLR and ROA (Table 3) which indicates that 9 of the total listed 14 companies can increase their ROA by decreasing their CACLR. The constant C was also found to be significant at 0.299861. The R-squared measures the overall fit of the model by measuring the success of the regression analysis in predicting the values of the dependent variable and is 33.367%. The adjusted R-squared, or the coefficient of multiple determinations, also measures the fit of the model where it adjusts for degrees of freedom used up by adding extra independent variables by penalizing R-squared for these independent variables. The R-squared in this case is 22.26%. The overall the Probability (F-statistic) is 0.0257, all of which indicates that the model used is sound.

Variables	Coefficient	Std. Error	t-Statistic	Prob.
С	0.299861	0.126884	2.363263	0.0248
X1	-8.90E-05	9.15E-05	-0.973086	0.3383
X2	-0.148648	0.058420	-2.544492	0.0163
X3	0.328843	0.162502	2.023623	0.0520
X4	-0.207245	0.268434	-0.772052	0.4461
X5	-0.117374	0.286917	-0.409085	0.6854
R-Squared	0.333671	Mean Dependent Var.		0.119023
Adjusted	0.222616	S.D. Dependent Var.		0.082226
R-Squared				
S.E. of	0.072498	Akaike Info Criterion		-2.259508
Regression				
Sum	0.157678	Schwarz Criterion		-1.995588
Squared				
Residuals				
Log	46.67114	Hannan-Quinn Criterion		-2.167393
Likelihood				
F-Statistic	3.004555	Durbin-Watson Statistic		0.548700
Prob(F-	0.025773			
Statistic)				

Table 3: Results for Pooled Ordinary Least Squares for ROA for Companies that Deal with Predominantly Goods

After running the fourth regression analysis with the ROIC as the independent variable for companies that deal with predominantly goods, the results show a negative significant relationship between CACLR and ROIC at the 5% significant level (Table 4) which indicates that these companies can significantly increase their ROIC by decreasing their CACLR, which will in terms increase their profitability. The R-squared is 41.7% and the Adjusted R-squared is 31.99%. The Probability (F-statistic) is 0.004595 indicating the significance of the model used.

Table 4: Results for Pooled Ordinary Least Squares for ROIC for Companies that Deal with Predominantly Goods

Variables	Coefficient	Std. Error	t-Statistic	Prob.
С	0.384537 0.224192 1.715216		1.715216	0.0966
X1	-8.55E-05	0.000162	-0.528793	0.6008
X2	-0.219826	0.103221	-2.129658	0.0415
X3	0.413287	0.287124	1.439401	0.1604
X4	-0.240049	0.474295	-0.506117	0.6165
X5	0.068448	0.506954	0.135019	0.8935
R-Squared	0.417093	Mean Dependent Var.		0.234149
Adjusted	0.319942	S.D. Dependent	Var.	0.155333
R-Squared				
S.E. of	0.128096	Akaike Info Criterion		-1.121056
Regression				
Sum	0.492260	Schwarz Criterio	on	-0.857137
Squared				
Residuals				
Log	26.17902	Hannan-Quinn Criterion		-1.028941
Likelihood				
F-Statistic	4.293243	Durbin-Watson Statistic		0.437815
Prob(F-	0.004595			
Statistic)				

After running the fifth regression for companies in which their sales are predominantly services with ROA being the dependent variable, the results showed that the CCC and DTAR were significant with ROA at a 5% significant level (Table 5). However the coefficient of the CCC is very small, almost close to zero, making it somewhat negligible. The DTAR however has a more significant negative relationship with ROA, demonstrating that these companies can notably increase their profitability by decreasing their DTAR. Here, the C has a coefficient of 0.22 and is significant. The R-squared and the Adjusted R-squared both indicate the soundness of the model at 55% and 39% respectively. The Probability (F-statistic) has a value of 0.03117 also reflecting the significance of the model.

The sixth regression shown in Table 6 demonstrates the significance of the independent variables on ROIC for companies that deal with predominantly services. Even though the results indicate that the CCC has a significant relationship with ROIC, the coefficient is very small that the relationship is to be considered insignificant. The constant C is significant with a coefficient of

0.237. The accuracy of the model is shown in the R-squared at 55.49% and the Adjusted R-squared at 39.59%. The Probability (F-statistic) with a value of 0.029453 also represents the soundness of the model.

Table 5: Results for Pooled Ordinary Least Squares for ROA for Companies that Deal with Predominantly Services

Variables	Coefficient	Std. Error	t-Statistic	Prob.
С	0.220144	0.039519	5.570608	0.0001
X1	-0.000586	0.000191	-3.058020	0.0085
X2	-0.001903	0.010857	-0.175330	0.8633
X3	-0.072653	0.118152	-0.614908	0.5485
X4	0.127006	0.263368	0.482238	0.6371
X5	-0.155928	0.066428	-2.347309	0.0341
R-Squared	0.550744	Mean Dependent Var.		0.113048
Adjusted R-	0.390296	S.D. Dependent Var.		0.029537
Squared				
S.E. of	0.023064	Akaike Info Criterion		-4.457772
Regression				
Sum	0.007447	Schwarz Criterion		-4.159052
Squared				
Residuals				
Log	50.57772	Hannan-Quinn Criterion		-4.399459
Likelihood				
F-Statistic 3.432533		Durbin-Watson Statistic		1.189338
Prob(F-	0.031170			
Statistic)				

Table 6: Results for Pooled Ordinary Least Squares for ROIC for Companies that Deal with Predominantly Services

Variables	Coefficient	Std. Error	t-Statistic	Prob.
С	0.237089	0.056461	4.199167	0.0009
X1	-0.000837	0.000274	-3.060866	0.0085
X2	0.000462	0.015511 0.029816		0.9766
X3	-0.127752	0.168806	-0.756801	0.4617
X4	0.249944	0.376276	0.664257	0.5173
X5	0.005911	0.094907	0.062280	0.9512
R-Squared	0.554938	Mean Dependent Var.		0.168372
Adjusted R-	0.395988	S.D. Dependent Var.		0.042399
Squared				
S.E. of	0.032952	Akaike Info Cri	terion	-3.744227
Regression				
Sum	0.015201	Schwarz Criterion		-3.445508
Squared				
Residuals				
Log	43.44227	Hannan-Quinn Criterion		-3.685914
Likelihood				
F-Statistic	3.491263	Durbin-Watson	Statistic	1.401053

Prob(F-	0.029453	
Statistic)		

Hausman's Specification Test

After getting the results of all the above-mentioned regressions, all of them were then tested for random effects and fixed effects. The reason for this is that pooled OLS denies the individuality that may exist between the companies in our sample, and that can be fixed by using fixed or random effects model. After that, Hausman's test was run to identify which one of the two models is appropriate (Table 7, 8, 9 and 10).

The values of Hausman's test all came up more than 0.05, indicating the acceptance of the null hypothesis which means the random effects model is more appropriate. However, no random effects exist when testing ROA and ROIC in predominantly service companies because the number of cross sections is not greater than that of coefficients, resulting in accepting the fixed effects model for these two regressions.

Test Summar	у	Chi-Sq. Statistic	Chi-Sq. d.f.	Prob.
Cross-Section	Random	3.057118	5	0.6912
Cross-Section	Random ef	ffects Test Comparis	ons	
Variables	Fixed	Random	Var(Diff.)	Prob.
X1	-	-0.000079	0.000000	0.3046
	0.000029			
X2	-	-0.010158	0.000041	0.3298
	0.016423			
X3	0.135116	0.054399	0.006512	0.3172
X4	-	0.039580	0.024013	0.2746
	0.129715			
X5	-	-0.121981	0.001077	0.8355
	0.128797			

Table 8: Results for Hausman Test for ROIC for All Companies

Test Summary	7	Chi-Sq. Statistic Chi-S		Sq. d.f.	Prob.
Cross-Section	Random	2.793913 5			0.7317
Cross-Section	Random eff	fects Test Comparis	ons		
Variables	Fixed	Random		Var(Diff.)	Prob.
X1	-	-0.000059		0.000000	0.3895
	0.000004				
X2	-	-0.007814		0.000071	0.3037
	0.016473				
X3	0.119678	0.007803		0.011122	0.2888
X4	-	0.139000		0.042133	0.2295
	0.107666				
X5	0.042324	0.042881		0.001654	0.9891

Test Summary		Chi-Sq. Statistic	Chi-Sq. d.f.	Prob.
Cross-Section	Random	7.911545	5	0.1612
Cross-Section	Random ef	fects Test Compariso	ons	
Variables	Fixed	Random	Var(Diff.)	Prob.
X1	-	-0.000105	0.000000	0.4255
	0.000052			
X2	-	-0.070641	0.000211	0.2248
	0.053004			
X3	0.276979	0.195645	0.012455	0.4661
X4	-	-0.111586	0.025275	0.5944
	0.196228			
X5 -		0.111487	0.016295	0.2804
	0.249269			

Table 9: Results for Hausman Test for ROA for Companies that Deal with

 Predominantly Goods

Table 10: Results for Hausman Test for ROIC for Companies that Deal with

 Predominantly Goods

Test Summary		Chi-Sq. Statistic	Chi-Sq. d.f.	Prob.
Cross-Section	Random	7.434191	5	0.1903
Cross-Section	Random ef	fects Test Comparis	ons	
Variables	Fixed	Random	Var(Diff.)	Prob.
X1	-	-0.000097	0.000000	0.3448
	0.000016			
X2	-	-0.071484	0.000347	0.2105
	0.048160			
X3	0.282207	0.172916	0.020461	0.4448
X4	-	-0.067242	0.038622	0.5713
	0.178490			
X5	-	0.066407	0.025980	0.2449
	0.121035			

Where we tested the impact the independent variables have on ROA and ROIC, the results of the random effect model (Table 11 and 12) indicate that there is no significant relationship between the dependent variables and ROA and ROIC. Both of which however have a significant constant at 16% and 17% respectively.

Furthermore, the random effect model assumes that each company has its own characteristics in determining the dependent variable; there is no relationship between the dependent variables and the unobservable heterogeneity of each firm. When testing the relationship between ROA and the independent variables for companies who deal with predominantly goods, the random effects model results indicate a significant negative relationship between CACLR and ROA in companies that deal with predominantly goods at a 95% significance rate, where (P-value) or probability is less than 5% (Table 13), implying that these 9 companies can use CACLR to increase their profits. The

constant came in significant at 23%. When checking the random effects for the ROIC for companies who deal with predominantly goods, the results showed no significant impact on ROIC by the dependent variables in companies that deal with predominantly goods (Table 14). The constant came is significant at 26%. This result, in terms of CACLR having a negative effect on ROA, was consistent with Mohamed and Saad [8]. But the value between CACLR and ROIC disagreed with the findings of their study.

Table 11: Results for Random Effects Model for ROA for All Companies	

Variables	Coefficient	Std.	Error	t-Statistic	Pr	ob.
С	0.162445	0.05	0493	3.217191	0.0	0023
X1	-7.95E-05	7.03	E-05	-1.130239	0.2	2638
X2	-0.010158	0.00	9248	-1.098444	0.2	2773
X3	0.054399	0.09	7860	0.555889	0.5	5808
X4	0.039580	0.152	2071	0.260271	0.′	7957
X5	-0.121981	0.09	5950	-1.271295	0.2	2095
Effects Specifications						
			S.D.			Rho
Cross-Section	n Random		0.068192			0.8106
Idiosyncratic	Random		0.032967	1		0.1894
Weighted Statistics						
R-Squared	0.103390		Mean De	pendent Var.		0.027464
Adjusted 1	R- 0.013729		S.D. Dep	endent Var.		0.032545
Squared						
S.E.	of 0.032321		Sum Squ	ared Residuals		0.052231
Regression						
F-Statistic	1.153118		Durbin-Watson Statistic 1.5462			1.546217
Prob(F-	0.345281					
Statistic)						
Unweighted S	Unweighted Statistics					
R-Squared 0.106080			Mean Dependent Var.			0.116889
Sum Square	ed 0.226763		Durbin-V	Vatson Statistic		0.356145
Residuals						

Table 12: Results for Random Effects Model for ROIC for A	ll Companies
---	--------------

Variables	Coefficient	Std.	Error	t-Statistic	Prol) .
С	0.170608	0.07	7777	2.193537	0.03	329
X1	-5.86E-05	0.00	0108	-0.544832	0.58	383
X2	-0.007814	0.013	3977	-0.559061	0.5786	
X3	0.007803	0.15	0477	0.051855	0.9589	
X4	0.139000	0.238326		0.583235	0.5624	
X5	0.042881	0.141169		0.303756	0.76	526
Effects Spec	ifications					
			S.D.			Rho
Cross-Section Random			0.122086			0.8673
Idiosyncratic Random			0.04776	0		0.1327
Weighted Statistics						

R-Squared	0.085009	Mean Dependent Var.	0.040438
Adjusted R-	-0.006490	S.D. Dependent Var.	0.046544
Squared			
S.E. of	0.046695	Sum Squared Residuals	0.109020
Regression			
F-Statistic	0.929069	Durbin-Watson Statistic	1.492437
Prob(F-	0.470200		
Statistic)			
Unweighted Stat	istics		
R-Squared	0.280795	Mean Dependent Var.	0.210657
Sum Squared	0.671935	Durbin-Watson Statistic	0.242145
Residuals			

Table 13: Results for Random Effects Model for ROA for Companies thatDeal with Predominantly Goods

Variables	Coe	efficient	Std. E	Error	t-Statistic	Pro	ob.
С	0.23	32268	0.084	274	2.756090	0.0	099
X1	-0.0	00105	8.06E	-05	-1.302767	0.2	026
X2	-0.0	70641	0.033	766	-2.092052	0.0	450
X3	0.19	95645	0.141	396	1.383662	0.1	767
X4	-0.1	11586	0.251	910	-0.442959	0.6	610
X5	-0.1	11487	0.226	332	-0.492583	0.6	259
Effects Spec	cifica	tions					
				S.D.			Rho
Cross-Section	on Ra	andom		0.0616	87		0.7421
Idiosyncrati	c Rai	ndom		0.036363		0.2579	
Weighted S	Weighted Statistics						
R-Squared		0.146619		Mean I	Dependent Var.		0.033650
Adjusted	R-	0.004389		S.D. D	ependent Var.		0.038170
Squared							
S.E.	of	0.038087		Sum Squared Residuals		0.043517	
Regression							
F-Statistic		1.030858		Durbin	-Watson Statistic		1.383928
Prob(F-		0.417499					
Statistic)							
Unweighted	Unweighted Statistics						
R-Squared		0.250810		Mean I	Dependent Var.		0.119023
Sum Squa	ared	0.177286		Durbin	-Watson Statistic		0.339705
Residuals							

Table 14: Results for Random Effects Model for ROIC for Companies that

 Deal with Predominantly Goods

Variables	Coefficient	Std. Error	t-Statistic	Prob.
С	0.260039	0.130339	1.995096	0.0552
X1	-9.71E-05	0.000127	-0.765499	0.4500
X2	-0.071484	0.050723	-1.409288	0.1690
X3	0.172916	0.222828	0.776006	0.4438

X4	-0.0	67242	0.3912	.97	-0.171844	0.8	647	
X5	0.06	56407	0.3462	.95	0.191764	0.8	3492	
Effects Spec	cifica	tions						
				S.D.			Rho	
Cross-Section	on Ra	andom		0.1188	365		0.8318	
Idiosyncrati	c Rai	ndom		0.0534	452		0.1682	
Weighted St	tatisti	ics						
R-Squared		0.110497		Mean	Dependent Var.		0.051365	
Adjusted	R-	-0.037754		S.D. D	Dependent Var.		0.054558	
Squared								
S.E.	of	0.055578		Sum S	quared Residuals		0.092669	
Regression								
F-Statistic		0.745336		Durbin	n-Watson Statistic	:	1.366353	
Prob(F-		0.595832						
Statistic)								
Unweighted	Unweighted Statistics							
R-Squared		0.314437		Mean	Dependent Var.		0.234149	
Sum Squa	ared	0.578953		Durbii	n-Watson Statistic		0.218702	
Residuals								

Where the fixed effects model was used to test the significance of the relationship between the independent variables and ROA and ROIC in companies that deal with predominantly services (Table 15 and 16), the results showed no considerable relationship between the dependent variables and ROA and ROIC. The fixed effects model assumes homogeneity among all companies; where there is a correlation between the unobservable heterogeneity of each firm and the dependent variables.

Table 15: Results for Fixed Effects Model for ROA for Companies that Deal with Predominantly Services

Variables	Coe	efficient	Std. E	rror	t-Statistic	Prob.	
С	0.19	91070	0.102	787	1.858885	0.092	7
X1	-0.0	00468	0.0005	505	-0.925786	0.376	4
X2	0.0	10827	0.0228	851	0.473791	0.645	8
X3	-0.1	91638	0.2462	297	-0.778078	0.454	5
X4	0.40	56108	0.5269	905	0.884616	0.397	1
X5	-0.2	41991	0.1220	021	-1.983198	0.075	5
Effects Specification							
Cross sectio	Cross section fixed (Dummy			bles)			
R-Squared		0.604467		Mean Dependent Var.		0.113048	
Adjusted	R-	0.248487		S.D. De	ependent Var.		0.029537
Squared							
S.E.	of	0.025606		Akaike	Info Criterion		-
Regression							4.185129
Sum Squa	ared	0.006557		Schwar	z Criterion		-
Residuals							3.687263
Log Likelih	ood	51.85129		Hannar	-Quinn Criterio	on	-
							4.087941

F-Statistic	1.698038	Durbin-Watson Statistic	1.615321
Prob(F-	0.210583		
Statistic)			

Table 16: Results for Fixed Effects Model for ROIC for Companies that Deal with Predominantly Services

Variables	Coefficient	St	d. Error	t-Statistic	Pı	rob.			
С	0.203274	0.	150517	1.350504	0.2066				
X1	-0.000647	0.0	000740	-0.874235	0.4025				
X2	0.019571	0.0	033462	0.584880	0.5716				
X3	-0.321914	0.	360667	-0.892551	0.3931				
X4	0.698337	0.′	771577	0.905078	0.3867				
X5	-0.109803	0.	178682	-0.614519	0.5526				
Effects Specification									
Cross section fixed (Dummy Variables)									
R-Squared	-Squared 0.588363		Mean Dependent Var.			0.168372			
Adjusted R-	- 0.217889		S.D. Dependent Var.			0.042399			
Squared									
S.E. of	0.037496		Akaike Info Criterion			-			
Regression						3.422298			
Sum Squared	1 0.014060	Schwarz Cr		iterion		-			
Residuals						2.924432			
Log	44.22298	2298 Ha		Hannan-Quinn Criterion		-			
Likelihood						3.325109			
F-Statistic	1.588136		Durbin-Watson Statistic			1.725338			
Prob(F-	0.240490								
Statistic)									

All these results are not consistent with Mohamad and Saad [8] also Pouraghajan and Emamgholipourarchi [6] in terms of CCC, DTAR and CACLR and their relationship with ROA and ROIC, with exception of companies who deal with mainly goods where their results showed a negative relationship between CACLR and ROA. The results nonetheless are in alliance with Pouraghajan and Emamgholipourarchi [6] for CATAR and CLTAR having a no significant relationship with ROA and ROIC. As for the CCC not having a significant relationship with the profitability variables, the results are consistent with Al-Shubiri and Aburumman [5] where their study found no significant relationship between ROA and CCC. Furthermore, Eljelly [9] imply in their study that the CCC loses its importance in labor-intensive markets, which includes services that is consistent with our results.

Given the fact the most researchers have found that the CCC has a significant effect on profitability as per theory, these results indicate that though such a relationship may have held true in Saudi Arabia, investors and firm policy makers have not reacted properly towards it, or that this information may not have been disseminated properly to the markets, thus leaving firms with suboptimal working capital management policies go unpunished. Subsequent to getting and analyzing the results, the following model represents the relationship between ROA and CACLR in companies that deal with mainly goods, considering it is the only significant relationship that came up in our analysis. The values used in the model can be shown in Table 13.

CONCLUSION

This paper, through empirical research, investigated the relationship between working capital management and the profitability of firms. The study found that there is a significant relationship between return on asset and working capital components in Saudi listed retail companies to be accepted, but only for the case of companies which predominantly deal with goods. In addition, there is no significant relationship between working capital management components and ROA and ROIC, except for companies that deal with mainly goods, where there is a significant relationship between CACLR and ROA.

Acknowledgments

The authors would like to thank the College of Business, Effat University for its unconditional support.

REFERENCES

- Pratap Singh, H., and Kumar, S. 2014. Working capital management: a literature review and research agenda. Qualitative Research in Financial Markets, 6, 2, 173-197.
- Mansoori, D. E., and Muhammad, D. 2012. Determinants of working capital management: Case of Singapore firms.
- Makori, D. M., and Jagongo, A. 2013. Working capital management and firm profitability: Empirical evidence from manufacturing and construction firms listed on Nairobi securities exchange, Kenya. International Journal of Accounting and Taxation, 1, 1, 1-14.
- Abuzayed, B. 2012. Working capital management and firms' performance in emerging markets: the case of Jordan. International Journal of Managerial Finance, 8, 2, 155-179.
- Al-Shubiri, F. N., and Aburumman, N. M. 2013. The relationship between cash conversion cycle and financial characteristics of industrial sectors: An empirical study. Investment Management and Financial Innovations, 10, 4, 95-102.
- Pouraghajan, A., and Emamgholipourarchi, M. 2012. Impact of working capital management on profitability and market evaluation: Evidence from Tehran Stock Exchange. International Journal of Business and Social Science, 3, 10.
- Bagchi, B., Chakrabarti, J., and Roy, P. B. 2012. Influence of working capital management on profitability: a study on Indian FMCG companies. International Journal of Business and Management, 7, 22, 1.
- Mohamad, N. E. A. B., and Saad, N. B. M. 2010. Working capital management: The effect of market valuation and profitability in Malaysia. International Journal of Business and Management, 5, 11, 140.
- Eljelly, A. M. 2004. Liquidity-profitability tradeoff: An empirical investigation in an emerging market. International journal of

commerce and management, 14, 2, 48-61.

*This form below helps us to understand your paper better, so please fill in the information of all authors. The form itself will not be published.

Authors' background

Position can be chosen from:										
Prof. / Assoc. Prof. / Asst. Prof. / Lect. / Dr. / Ph. D Candidate /										
Postgraduate / Ms.										
Pape	Position, Full	Email address	Research	Personal	website					
r ID	Name,		Interests	(if any)						
	Working unit			-						
	& nation									
	Assoc. Prof.,	mmahees@eff								
	Dr. Mohamed	atuniversity.e								
	Mahees	<u>du.sa</u>								
	Raheem,									
	Effat									
	University,									
	Saudi Arabia									
	Student,	yalhashiem@								
	Yasmin	<u>effatuniversit</u>								
	AlHashiem,	<u>y.edu.sa</u>								
	Effat									
	University,									
	Saudi Arabia									